3235=
\( \frac{3^5}{3^2}= \)
\( \frac{5^6}{5^4}= \)
\( 112^0=\text{?} \)
\( (3^5)^4= \)
\( (6^2)^{13}= \)
Usando la regla del cociente para exponentes: . Aquí, tenemos . Simplifying, we get .
Usando la regla del cociente para exponentes: .
Aquí, tenemos .Simplificando,obtenemos \)
Usamos la propiedad de potenciación del cero.
Obtenemos
Por lo tanto, la respuesta correcta es la opción C.
1
Para resolver el ejercicio usamos la propiedad de potencias.
Utilizamos la propiedad con el ejercicio específico y resolvemos:
Utilizamos la fórmula:
Por lo tanto obtenemos:
\( \frac{2^4}{2^3}= \)
\( (4^2)^3+(g^3)^4= \)
\( (y\times x\times3)^5= \)
\( (a\cdot b\cdot8)^2= \)
\( (a\times b\times c\times4)^7= \)
Tengamos en cuenta que el numerador y denominador de la fracción tienen términos con la misma base, por lo tanto usamos la propiedad de potencias para dividir entre términos con la misma base:
Lo aplicamos en el problema:
Recordemos que todo número elevado a la 1ª potencia es igual al número mismo, es decir que:
Por lo tanto en el problema obtenemos:
Por lo tanto, la respuesta correcta es la opción a.
Utilizamos la fórmula:
Utilizamos la fórmula:
Utilizamos la fórmula
Por lo tanto, obtenemos:
Utilizamos la fórmula:
Por lo tanto, obtenemos:
\( \frac{27}{3^8}=\text{?} \)
\( \frac{9\cdot3}{8^0}=\text{?} \)
\( \frac{81}{3^2}= \)
Inserta la expresión correspondiente:
\( \left(15\right)^{xy}= \)
\( 4^{-1}=\text{?} \)
Primero tengamos en cuenta que 27 es una potencia del número 3:
Usando este hecho se da una situación en la que en el numerador de la fracción y su denominador obtendremos términos con bases idénticas, lo aplicamos en el problema:
Ahora recordemos la propiedad de potenciación para la división entre términos sin bases idénticas:
Aplicamos la propiedad en la última expresión que obtuvimos:
Cuando en la primera etapa aplicamos la propiedad antes mencionada y en la segunda etapa simplificamos la expresión que recibimos en el exponente,
Resumimos los pasos de resolución, obtuvimos:
Por lo tanto, la respuesta correcta es la opción D.
Usamos la fórmula:
Sabemos que:
Por lo tanto, obtenemos:
Usamos la fórmula:
Primero reconocemos que 81 es una potencia del número 3, lo que significa que:
Reemplazamos en el problema:
Tengamos en cuenta que el numerador y denominador de la fracción tienen términos con la misma base, por lo tanto usamos la propiedad de potencias para dividir entre términos con la misma base:
Lo aplicamos en el problema:
Por lo tanto, la respuesta correcta es la opción b.
Inserta la expresión correspondiente:
Para resolver este problema, reescribiremos la expresión usando las reglas de exponentes.
Opción 1: es equivalente a ya que aplicando la regla nos da .
Opción 2: también es equivalente a porque aplicando la regla obtenemos .
Opción 3: resulta en , que no es equivalente a ya que usa la regla del producto de potencias.
Opción 4: Tanto como son correctas basadas en las reglas involucradas.
Basado en el análisis, la opción 4 (a'+b' son correctas) es la respuesta correcta.
Tanto como son representaciones equivalentes de .
a'+b' son correctas
Usamos la propiedad de potenciación de un exponente negativo:
Lo aplicamos en el problema:
Por lo tanto, la respuesta correcta es la opción B.
\( 2^{-5}=\text{?} \)
\( (-7)^{-3}=\text{?} \)
\( 7^{-24}=\text{?} \)
\( 19^{-2}=\text{?} \)
\( 8^{-2x}=\text{?} \)
Usamos la propiedad de potenciación de un exponente negativo:
Lo aplicamos en el problema:
Por lo tanto, la respuesta correcta es la opción A.
Usamos la propiedad de potenciación para un exponente negativo:
Lo aplicamos en el problema:
Cuando notamos que cada número entero entre paréntesis se eleva a una potencia negativa (es decir, el número y su coeficiente negativo juntos), al usar la propiedad de potenciación mencionada anteriormente fuimos cuidadosos y tomamos este hecho en cuenta,
Continuamos simplificando la expresión en el denominador de la fracción, recordando la propiedad de potenciación para la potencia de términos en la multiplicación:
Aplicamos la expresión que obtuvimos:
Resumiendo la solución al problema, obtuvimos que:
Por lo tanto, la respuesta correcta es la opción B.
Usamos la propiedad de potenciación de un exponente negativo:
Lo aplicamos en el problema:
Por lo tanto, la respuesta correcta es la opción D.
Para resolver el ejercicio, usamos la propiedad de potenciación de un exponente negativo
Usamos la propiedad para resolver el ejercicio:
Podemos continuar y resolver la potencia
Usamos la propiedad de potenciación para un exponente negativo:
La aplicamos al problema:
A continuación utilizamos la propiedad de potenciación para un exponente elevado a otro exponente:
Aplicamos esta propiedad al término en el denominador de la fracción obtenida en el último paso:
Cuando en realidad usamos la propiedad antes mencionada en sentido contrario, es decir, en lugar de abrir los paréntesis y realizar una multiplicación en el exponente, interpretamos el producto en el exponente de la potencia como una forma de exponente elevado a otro exponente poder sobre potencia, en el último paso calculamos el resultado de la potencia dentro de los paréntesis en el denominador.
Resumimos los pasos de resolución, obtenemos que:
Por lo tanto, la respuesta correcta es la opción D.