8:2(2+2)=
\( 8:2(2+2)= \)
Resuelve el ejercicio:
\( 3:(4+5)\cdot9-6= \)
Resuelve el ejercicio:
\( 3\cdot(4-1)+5:1= \)
Resuelve el ejercicio:
\( 4\cdot2-3:(1+3)= \)
Calcule e indique la respuesta:
\( (10^2-2\cdot5):3^2 \)
Comencemos con la parte dentro de los paréntesis.
Luego resolveremos el ejercicio de izquierda a derecha
La respuesta:
16
Resuelve el ejercicio:
Resolvemos el ejercicio entre paréntesis:
Simplificamos y restamos:
-3
Resuelve el ejercicio:
Resolvemos el ejercicio entre paréntesis:
Colocamos entre paréntesis los ejercicios de multiplicación y división:
Resolvemos los ejercicios entre paréntesis:
Resuelve el ejercicio:
Primero resolvemos el ejercicio entre paréntesis:
Colocamos entre paréntesis los ejercicios de multiplicación y división:
Resolvemos los ejercicios entre paréntesis:
Calcule e indique la respuesta:
Recordemos primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que preceden a la suma y a la resta (y los paréntesis siempre preceden a todo),
Por lo tanto, primero calculamos el valor de la expresión dentro del paréntesis (calculando primero los valores de los términos en la potencia dentro de los paréntesis):
Cuando en el segundo paso simplificamos la expresión entre paréntesis y en el siguiente paso escribimos la operación de división como una fracción,
Posteriormente realizamos la división (en realidad simplificamos la fracción):
Por lo tanto, la respuesta correcta es la opción D.
10
Calcule e indique la respuesta:
\( 5:(13^2-12^2) \)
Calcule e indique la respuesta:
\( (5-2)^2-2^3 \)
Calcule e indique la respuesta:
\( (\sqrt{100}-\sqrt{9})^2:7 \)
Calcule e indique la respuesta:
\( (\sqrt{9}-\sqrt{4})^2\cdot4^2-5^1 \)
Resuelva el ejercicio:
\( 2\times3-(4+5):2= \)
Calcule e indique la respuesta:
Recordemos primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que preceden a la suma y a la resta (y los paréntesis siempre preceden a todo),
Por lo tanto, primero calculamos el valor de la expresión dentro del paréntesis (calculando primero los valores de los términos en la potencia dentro de los paréntesis):
Cuando en el segundo paso simplificamos la expresión entre paréntesis y en el siguiente paso escribimos la operación de división como una fracción,
Posteriormente realizamos la división (en realidad simplificamos la fracción):
Por lo tanto, la respuesta correcta es la opción C.
Calcule e indique la respuesta:
Recuerda primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que estas preceden a la suma y a la resta (y los paréntesis siempre preceden a todo).
Así que primero calcula los valores de los términos en la potencia y luego resta entre los resultados:
Por lo tanto, la respuesta correcta es la opción C.
1
Calcule e indique la respuesta:
Recordemos primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que preceden a la suma y a la resta (y los paréntesis siempre preceden a todo),
Por lo tanto, primero calculamos el valor de la expresión dentro del paréntesis (calculando primero los valores de los términos en la potencia dentro de los paréntesis):
Cuando en el segundo paso simplificamos la expresión entre paréntesis y en el siguiente paso escribimos la operación de división como una fracción,
A continuación, calculamos el valor del término en el numerador de la fracción realizando la multiplicación, y en el siguiente paso realizamos la división (en realidad simplificamos la fracción):
Por lo tanto, la respuesta correcta es la opción A.
7
Calcule e indique la respuesta:
Recordemos primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y la división, que preceden a la suma y la resta (y los paréntesis siempre preceden a todo),
Entonces, primero calculamos el valor de la expresión dentro de los paréntesis (calculando primero las raíces dentro de los paréntesis):
Cuando en el segundo paso simplificamos la expresión de los paréntesis,
A continuación, calculamos el valor de los términos de la potencia
A continuación, calculamos el resultado de las multiplicaciones
Luego, realizamos la resta:
Por lo tanto, la respuesta correcta es la opción B.
11
Resuelva el ejercicio:
De acuerdo con las reglas del orden de las operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:
Ahora obtenemos el ejercicio:
Colocamos entre paréntesis los ejercicios de multiplicación y división:
Resolvemos los ejercicios entre paréntesis:
Ahora obtenemos el ejercicio:
Calcule e indique la respuesta:
\( (4^2+3^2):\sqrt{25} \)
Calcule e indique la respuesta:
\( (\sqrt{25}-2^2)^3+2^3 \)
Resuelva la siguiente ecuación:
\( \frac{400\colon(-5)-\lbrack-2(93-61)\rbrack}{4}= \)
Calcule e indique la respuesta:
\( (3^2+2^2)^2:(\sqrt{256}-\sqrt{9})-\sqrt{9}\cdot\sqrt{9} \)
Marque la respuesta correcta:
\( \)\( \frac{(25-2-16)^2+3}{8+5}:\sqrt{9}= \)
Calcule e indique la respuesta:
Recordemos primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que preceden a la suma y a la resta (y los paréntesis siempre preceden a todo),
Por lo tanto, primero calculamos el valor de la expresión dentro del paréntesis (calculando primero los valores de los términos en la potencia dentro de los paréntesis):
Cuando en el segundo paso simplificamos la expresión entre paréntesis y en el siguiente paso escribimos la operación de división como una fracción,
Continuamos y calculamos el valor de la raíz en el denominador:
Y luego realizamos la división (simplificando la fracción de hecho):
Por lo tanto, la respuesta correcta es la opción B.
5
Calcule e indique la respuesta:
Recordemos primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que preceden a la suma y a la resta (y los paréntesis siempre preceden a todo),
Por lo tanto, primero calculamos el valor de la expresión dentro del paréntesis (calculando primero los valores de los términos en la potencia dentro de los paréntesis):Cuando en el segundo paso simplificamos la expresión entre paréntesis,
A continuación, calculamos los valores de los términos en los exponentes y realizamos la operación de suma:
Por lo tanto, la respuesta correcta es la opción A.
9
Resuelva la siguiente ecuación:
Nos referimos al numerador de fracciones, primero resolvemos el ejercicio de división y el ejercicio entre paréntesis:
Ahora obtenemos:
Resolvemos los paréntesis del numerador de fracciones, primero los paréntesis:
Recordemos que menos por menos es igual a más:
Calcule e indique la respuesta:
Recordemos primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que preceden a la suma y a la resta (y los paréntesis siempre preceden a todo),
Por lo tanto, primero calculamos el valor de la expresión dentro del paréntesis (calculando primero los valores de los términos en la potencia dentro de los paréntesis):
Posteriormente simplificamos las expresiones entre paréntesis y realizamos la operación de división:
Cuando en el último paso registramos la operación de división como una fracción y calculamos el valor numérico de las raíces en el segundo término desde la izquierda,
Aquí puedes usar la propiedad de potenciación para dividir términos con bases idénticas, para calcular el resultado del primer término de la izquierda en la expresión que obtuvimos en el último paso, sin embargo, también puedes recordar que elevar al cuadrado es duplicar el número en sí, por lo que esta fracción se puede calcular más fácilmente simplificando:Cuando en el último paso realizamos adicionalmente la multiplicación en el segundo término desde la izquierda,
Luego queda calcular el resultado de la operación de resta:Por lo tanto, la respuesta correcta es la opción C.
4
Marque la respuesta correcta:
Este concepto básico se llama la jerarquía de las operaciones matemáticas, que establece que la multiplicación y la división se realizan antes que la suma y la resta, y que las operaciones dentro de los paréntesis tienen prioridad sobre todas ellas,
Recordemos que la suma y la resta son operaciones inversas entre sí (cada una deshace a la otra) y que la multiplicación y la división son operaciones inversas entre sí (en su totalidad) que se realizan entre ellas la operación de división, es decir, podemos tratar la suma y la resta como fracciones que se suman o restan, de esta manera podemos simplificar la fracción dada y escribirla de la siguiente manera:
Esto se hace para enfatizar que las fracciones que se suman o restan deben tratarse por separado, ya que realmente existen como fracciones,
Regresando al concepto original de la pregunta, es decir, en la forma dada, y simplificando por separado las fracciones que se suman o restan en la pregunta y las fracciones que se multiplican, esto se hace en conformidad con la jerarquía de las operaciones matemáticas mencionada anteriormente y de una manera ordenada,
Recordemos que en la fracción dada, las fracciones que se multiplican cambian la fracción en términos de su fortaleza, por lo tanto, comenzaremos simplificando esta fracción, ya que esta fracción incluye solo multiplicación y división, realizamos las operaciones en conformidad con la jerarquía de las operaciones matemáticas naturales, es decir, de izquierda a derecha, simplificando la fracción que se multiplica:
Continuaremos y simplificaremos la fracción que recibimos en el paso anterior, es decir, primero realizaremos la operación de división del divisor, esto se hace mediante simplificación, y luego realizaremos la operación de división restante:
En el primer paso, dado que el resultado de la operación de división puede ser una fracción impropia (mayor que un entero, dado que el divisor es mayor que el dividendo) lo anotamos como una fracción mixta (donde el entero es mayor que el denominador),
Resumiremos los pasos de simplificación de la fracción dada, hemos encontrado que:
Por lo tanto, la respuesta correcta es la respuesta B.
Nota:
Recordemos que en el conjunto de los últimos pasos de la solución al problema, podemos comenzar a anotar el divisor y la operación de división que se realiza sobre él incluso sin el divisor, pero mediante la operación de división:
Y continuando comenzaremos a calcular la operación de división en el divisor y solo después de hacerlo en el número 3, enfatizamos que en general simplificamos esta fracción en conformidad con la jerarquía de las operaciones matemáticas naturales, es decir, realizamos las operaciones una tras otra de izquierda a derecha, y esto significa que no hay prioridad para una operación de división en la fracción dada más allá de lo que está determinado por la jerarquía de las operaciones matemáticas naturales, es decir, de izquierda a derecha, (Recordemos además que la jerarquía de las operaciones matemáticas mencionada al principio del problema, que establece que la multiplicación y la división se realizan antes que la suma y la resta, y que las operaciones dentro de los paréntesis tienen prioridad sobre todas ellas, no define una prioridad incluso entre la multiplicación y la división, y por lo tanto el orden entre estas dos operaciones, en diferentes contextos, es diferente, se considera de izquierda a derecha).
\( 225:[(26-6:3)\times5]= \)
\( 0.6\times(1+2)= \)
\( \frac{1}{3}+(2-1)= \)
¿Cuál es el resultado de la siguiente potencia?
\( (\frac{2}{3})^3 \)
Calcule e indique la respuesta:
\( 7:(5^2-\sqrt{16})\cdot3+\sqrt{3}\cdot\sqrt{3} \)
Primero resolvemos el ejercicio en los paréntesis más internos:
Según el orden de las operaciones aritméticas, primero dividimos y luego restamos:
Ahora obtenemos el ejercicio:
Resolvemos el ejercicio de multiplicación y luego dividimos:
1.875
1.8
¿Cuál es el resultado de la siguiente potencia?
Calcule e indique la respuesta:
4