\( \log_35x\times\log_{\frac{1}{7}}9\ge\log_{\frac{1}{7}}4 \)
\( 0 < x\le\frac{1}{245} \)
\( 0 < x\le\frac{1}{24010} \)
\( \log_{\frac{1}{3}}e^2\ln x<3\log_{\frac{1}{3}}2 \)
\( 0 < x < \sqrt{8} \)
\( \sqrt{8} < x \)
Dado 0<X , halla a X
\( \log_4x\times\log_564\ge\log_5(x^3+x^2+x+1) \)
\( 0 < x \)
No hay solución
log35x×log179≥log174 \log_35x\times\log_{\frac{1}{7}}9\ge\log_{\frac{1}{7}}4 log35x×log719≥log714
0<x≤1245 0 < x\le\frac{1}{245} 0<x≤2451
log13e2lnx<3log132 \log_{\frac{1}{3}}e^2\ln x<3\log_{\frac{1}{3}}2 log31e2lnx<3log312
8<x \sqrt{8} < x 8<x
Dado 0log4x×log564≥log5(x3+x2+x+1) \log_4x\times\log_564\ge\log_5(x^3+x^2+x+1) log4x×log564≥log5(x3+x2+x+1)
log4x×log564≥log5(x3+x2+x+1) \log_4x\times\log_564\ge\log_5(x^3+x^2+x+1) log4x×log564≥log5(x3+x2+x+1)