log7x+log(x+1)−log7=log2x−logx
?=x
\( \log7x+\log(x+1)-\log7=\log2x-\log x \)
\( ?=x \)
\( \log_2x+\log_2\frac{x}{2}=5 \)
?=x
\( \log_4x+\log_4(x+2)=2 \)
?=a
\( \ln(a+5)+\ln(a+7)=0 \)
\( \log3x+\log(x-1)=3 \)
\( ?=x \)
Domino de definición
x>0
x+1>0
x>-1
Reducimos por: y por
No dominio de definición x>0
Dominio de definición
?=x
?=a
Encuentra a X
\( \frac{\log_84x+\log_8(x+2)}{\log_83}=3 \)
\( x=\text{?} \)
\( \ln(x+5)+\ln x≤\ln4+\ln2x \)
Halla a X:
\( \ln x+\ln(x+1)-\ln2=3 \)
\( \log_{0.25}7+\log_{0.25}\frac{1}{3}<\log_{0.25}x^2 \)
\( x=\text{?} \)
\( \log_49x+\log_4(x+4)-\log_43=\ln2e+\ln\frac{1}{2e} \)
Encuentra a X
Encuentra a X
0 < X \le 3
Halla a X:
\log_{0.25}7+\log_{0.25}\frac{1}{3}<\log_{0.25}x^2
-\sqrt{\frac{7}{3}} < x < 0,0 < x < \sqrt{\frac{7}{3}}
Encuentra a X
\( \log_5x+\log_5(x+2)+\log_25-\log_22.5=\log_37\times\log_79 \)
Dado 0<a , halla a X:
\( \log_{2a}e^7(\ln a+\ln4a)=\log_4x-\log_4x^2+\log_4\frac{1}{x+1} \)
\( \log_ax\log_by\log_c2=(\log_ay^3-\log_ay^2)(\log_b\frac{1}{2}+\log_b2^2)\log_c(x^2+1) \)
Dado 0<a , halla a X:
No hay solución