Suma de logaritmos - Ejemplos, Ejercicios y Soluciones

Entendiendo la Suma de logaritmos

Explicación completa con ejemplos

Suma de Logaritmos

La definición de un logaritmo es:


logax=blog_a⁡x=b
X=abX=a^b

Donde:
aa es la base del exponente
XX es lo que aparece dentro del logaritmo, también puede aparecer entre paréntesis
bb es el exponente al que elevamos la base del logaritmo para obtener el número que aparece dentro del logaritmo.

La suma de logaritmos con la misma base se basa en la siguiente regla:


logax+logay=loga(xy)log_a⁡x+log_a⁡y=log_a⁡(x\cdot y)

Explicación visual de las reglas logarítmicas que muestra que log(x·y) es igual a log(x) más log(y), y log(x/y) es igual a log(x) menos log(y), con flechas conectando cada parte para mayor claridad.

La suma de logaritmos con diferentes bases se realiza cambiando la base del logaritmo usando la siguiente regla:

logaX=logbase que queremos cambiar aXlogbase que queremos cambiar aalog_aX=\frac{log_{base~que~queremos~cambiar~a}X}{log_{base~que~queremos~cambiar~a}a}

Fórmula de cambio de base logarítmica ilustrada: logaritmo base b de a es igual a logaritmo base x de a dividido por logaritmo base x de b, con flechas mostrando la transformación desde la forma original.

Explicación completa

Practicar Suma de logaritmos

Pon a prueba tus conocimientos con más de 6 cuestionarios

Encuentra a X

\( \frac{\log_84x+\log_8(x+2)}{\log_83}=3 \)

ejemplos con soluciones para Suma de logaritmos

Soluciones paso a paso incluidas
Ejercicio #1

2log82+log83= 2\log_82+\log_83=

Solución Paso a Paso

2log82=log822=log84 2\log_82=\log_82^2=\log_84

2log82+log83=log84+log83= 2\log_82+\log_83=\log_84+\log_83=

log843=log812 \log_84\cdot3=\log_812

Respuesta:

log812 \log_812

Solución en video
Ejercicio #2

3log49+8log413= 3\log_49+8\log_4\frac{1}{3}=

Solución Paso a Paso

En donde:

3log49=log493=log4729 3\log_49=\log_49^3=\log_4729

y

8log413=log4(13)8= 8\log_4\frac{1}{3}=\log_4\left(\frac{1}{3}\right)^8=

log4138=log416561 \log_4\frac{1}{3^8}=\log_4\frac{1}{6561}

Por lo tanto

3log49+8log413= 3\log_49+8\log_4\frac{1}{3}=

log4729+log416561 \log_4729+\log_4\frac{1}{6561}

logax+logay=logaxy \log_ax+\log_ay=\log_axy

(72916561)=log419 \left(729\cdot\frac{1}{6561}\right)=\log_4\frac{1}{9}

log491=log49 \log_49^{-1}=-\log_49

Respuesta:

log49 -\log_49

Solución en video
Ejercicio #3

12log24×log38+log39×log37= \frac{1}{2}\log_24\times\log_38+\log_39\times\log_37=

Solución Paso a Paso

Descomponemos en partes

log24=x \log_24=x

2x=4 2^x=4

x=2 x=2

log39=x \log_39=x

3x=9 3^x=9

x=2 x=2

Reemplazamos en la ecuación

122log38+2log37= \frac{1}{2}\cdot2\log_38+2\log_37=

1log38+2log37= 1\cdot\log_38+2\log_37=

log38+log372= \log_38+\log_37^2=

log38+log349= \log_38+\log_349=

log3(849)=log3392 \log_3\left(8\cdot49\right)=\log_3392 x=2 x=2

Respuesta:

log3392 \log_3392

Solución en video
Ejercicio #4

log7x+log(x+1)log7=log2xlogx \log7x+\log(x+1)-\log7=\log2x-\log x

?=x ?=x

Solución Paso a Paso

Domino de definición

x>0

x+1>0

x>-1

log7x+log(x+1)log7=log2xlogx \log7x+\log\left(x+1\right)-\log7=\log2x-\log x

log7x(x+1)7=log2xx \log\frac{7x\cdot\left(x+1\right)}{7}=\log\frac{2x}{x}

Reducimos por: 7 7 y por X X

x(x+1)=2 x\left(x+1\right)=2

x2+x2=0 x^2+x-2=0

(x+2)(x1)=0 \left(x+2\right)\left(x-1\right)=0

x+2=0 x+2=0

x=2 x=-2

No dominio de definición x>0

x1=0 x-1=0

x=1 x=1

Dominio de definición

Respuesta:

1 1

Solución en video
Ejercicio #5

log103+log104= \log_{10}3+\log_{10}4=

Solución Paso a Paso

Respuesta:

log1012 \log_{10}12

Solución en video

Continúa tu viaje matemático

Practica por Tipo de Pregunta