2log38=
\( 2\log_38= \)
\( 3\log_76= \)
\( x\ln7= \)
\( \log_68= \)
\( n\log_xa= \)
\( x\log_m\frac{1}{3^x}= \)
Hallar a X:
\( 2\log(x+4)=1 \)
\( \log_{\frac{1}{3}}e^2\ln x<3\log_{\frac{1}{3}}2 \)
Dado 0<X , halla a X
\( \log_4x\times\log_564\ge\log_5(x^3+x^2+x+1) \)
Hallar a X:
\log_{\frac{1}{3}}e^2\ln x<3\log_{\frac{1}{3}}2
\sqrt{8} < x
Dado 0<X , halla a X
No hay solución