log4x9log4xa= \frac{\log_{4x}9}{\log_{4x}a}= log4xalog4x9=
loga9 \log_a9 loga9
log4x9a \log_{4x}\frac{9}{a} log4xa9
log89alog83a= \frac{\log_89a}{\log_83a}= log83alog89a=
log9a3a \log_{9a}3a log9a3a
log3a9a \log_{3a}9a log3a9a
ln4x= \ln4x= ln4x=
log74xln7 \frac{\log_74x}{\ln7} ln7log74x
log74xlog7e \frac{\log_74x}{\log_7e} log7elog74x
log4(x2+8x+1)log48=2 \frac{\log_4(x^2+8x+1)}{\log_48}=2 log48log4(x2+8x+1)=2
x=? x=\text{?} x=?
−4±79 -4\pm\sqrt{79} −4±79
−4±47 -4\pm\sqrt{47} −4±47
Encuentra a X
log84x+log8(x+2)log83=3 \frac{\log_84x+\log_8(x+2)}{\log_83}=3 log83log84x+log8(x+2)=3
−1+312 -1+\frac{\sqrt{31}}{2} −1+231
5 5 5
2log7(x+1)log7e=ln(3x2+1) \frac{2\log_7(x+1)}{\log_7e}=\ln(3x^2+1) log7e2log7(x+1)=ln(3x2+1)
−13,1 -\frac{1}{3},1 −31,1
1,0 1,0 1,0
Cuál es el dominio de X para que se cumpla:
log182xlog184<log4(5x−2) \frac{\log_{\frac{1}{8}}2x}{\log_{\frac{1}{8}}4}<\log_4(5x-2) log814log812x<log4(5x−2)
23<x \frac{2}{3} < x 32<x
−23>x -\frac{2}{3} > x −32>x , 25<x \frac{2}{5} < x 52<x
log8x3log8x1.5+1log49x×log7x5= \frac{\log_8x^3}{\log_8x^{1.5}}+\frac{1}{\log_{49}x}\times\log_7x^5= log8x1.5log8x3+log49x1×log7x5=
log8x1.5+10 \log_8x^{1.5}+10 log8x1.5+10
12 12 12
logx16×ln7−lnxln4−logx49= \log_x16\times\frac{\ln7-\ln x}{\ln4}-\log_x49= logx16×ln4ln7−lnx−logx49=
−2 -2 −2
(7−x7)2 (\frac{7-x}{7})\frac{}{}^2 (77−x)2
log47×log149aclog4b= \frac{\log_47\times\log_{\frac{1}{49}}a}{c\log_4b}= clog4blog47×log491a=
−12logbac -\frac{1}{2}\log_ba^c −21logbac
logbc1a \log_{b^c}\frac{1}{\sqrt{a}} logbca1
\frac{\log_{\frac{1}{8}}2x}{\log_{\frac{1}{8}}4}<\log_4(5x-2)
\frac{2}{3} < x
logx4+logx30.25xlogx11+x=3 \frac{\log_x4+\log_x30.25}{x\log_x11}+x=3 xlogx11logx4+logx30.25+x=3
2 2 2
1,2 1,2 1,2
1log2x6×log236=log5(x+5)log52 \frac{1}{\log_{2x}6}\times\log_236=\frac{\log_5(x+5)}{\log_52} log2x61×log236=log52log5(x+5)
−1 -1 −1
1.25 1.25 1.25