Ejemplos, ejercicios y soluciones de propiedad distributiva con ampliación

¿Quieres aprender sobre el tema de distributividad?

¡Lo primordial en el estudio de las matemáticas, como ya lo sabes, es la práctica!
En esta página encontrarás más de 5 ejemplos y ejercicios con soluciones sobre la propiedad distributiva, hay ejemplos y ejercicios con soluciones sobre el tema de la propiedad distributiva para que puedas practicar por tu cuenta y profundices en tus conocimientos.

🏆Ejercicios de la propiedad distributiva: ampliación

¿Por qué es importante que practiques sobre propiedad distributiva?

Incluso si ya estudiamos las diferentes propiedades (la propiedad distributiva, la propiedad asociativa y la propiedad conmutativa) y estamos seguros de haber entendido el asunto en general, ¡es importante que intentes resolver ejercicios por tu cuenta!
Vale la pena experimentar tantos tipos de preguntas como sea posible y analizar la mayor cantidad de ejemplos sobre la propiedad distributiva.
Solo practicando y resolviendo un amplio número de preguntas y ejercicios con la propiedad distributiva, podrás asimilar a fondo el tema y adquirirás las herramientas necesarias para enfrentar cualquier desafío por tus propios medios.

Preguntas básicas

Ejemplos y ejercicios con soluciones sobre la propiedad distributiva con extensión

Ejercicio #1

(a+4)(c+3)= (a+4)(c+3)=

Solución

Cuando nos encontramos con un ejercicio de multiplicación de este tipo, podemos reconocer que se debe seguir la propiedad distributiva.

Paso 1: multiplica el primer factor del primer paréntesis por cada uno de los factores del segundo paréntesis.

Paso 2: multiplica el segundo factor del primer paréntesis por cada uno de los factores del segundo paréntesis.

Paso 3: agrupamos términos semejantes.

 

a * (c+3) =

a*c + a*3

4  * (c+3) =

4*c + 4*3

 

ac+3a+4c+12

 

No hay términos semejantes para simplificar aquí, ¡así que esta es la solución!

Respuesta

ac+3a+4c+12 ac+3a+4c+12

Ejercicio #2

(2x3)×(5x7) (2x-3)\times(5x-7)

Solución

Para responder a este ejercicio, necesitamos entender cómo funciona la propiedad distributiva extendida:

Por ejemplo:

(a+1)∗(b+2)

Para resolver este tipo de ejercicios se deben resolver los siguientes pasos:

Paso 1: multiplicamos el primer factor del primer paréntesis por cada uno de los factores del segundo paréntesis.

Paso 2: multiplicamos el segundo factor del primer paréntesis por cada uno de los factores del segundo paréntesis.

Paso 3: agrupamos en términos semejantes.

 

ab∗2ab∗2

 

Comenzamos desde el primer número del ejercicio: 2x

2x*5x+2x*-7

10x²-14x

 

Continuaremos con el segundo factor: -3

-3*5x+-3*-7

-15x+21

 

Sumamos todos los datos juntos:

 

10x²-14x-15x+21

10x²-29x+21

 

Respuesta

10x229x+21 10x^2-29x+21

Ejercicio #3

¿Es posible utilizar la propiedad distributiva para simplificar la expresión dada

(ab)(cd) (ab)(c d) ?

Solución

Recordemos la propiedad distributiva extendida:

(a+b)(c+d)=ac+ad+bc+bd (\textcolor{red}{a}+\textcolor{blue}{b})(c+d)=\textcolor{red}{a}c+\textcolor{red}{a}d+\textcolor{blue}{b}c+\textcolor{blue}{b}d Tengamos en cuenta que la operación entre los términos de la expresión dentro del paréntesis entre los cuales se realiza la multiplicación es una operación de multiplicación:

(ab)(cd) (a b)(c d) Esto contrasta con la operación entre los términos en las expresiones entre paréntesis en la propiedad distributiva ampliada antes mencionada, que es la suma (o la resta, que en realidad es la suma del término con un signo menos),

Además, notaremos que como hay una multiplicación entre todos los términos, tanto en la expresión dentro del paréntesis como entre las expresiones dentro del paréntesis, existe una multiplicación donde los paréntesis en realidad son redundantes y se pueden omitir y obtenemos:

(ab)(cd)=abcd (a b)(c d)= \\ abcd Por lo tanto, la apertura de los paréntesis en la expresión dada con el uso de la propiedad distributiva extendida es incorrecta y produce un resultado incorrecto.

Por lo tanto, la respuesta correcta es la opción d.

Respuesta

No, abcd abcd

Ejercicio #4

Es posible utilizar la propiedad distributiva para simplificar la expresión

(17+c)(5+a+3) (17+c)(5+a+3)

Solución

Podemos utilizar el paréntesis de la derecha ya que se puede simplificar de la siguiente manera:

(8+a)

Luego obtendremos el ejercicio:

(17+c)(8+a)= (17+c)(8+a)=

136+17a+8c+ca 136+17a+8c+ca

Respuesta

Si, 136+17a+8c+ca 136+17a+8c+ca

Ejercicio #5

¿Las expresiones de ambos lados son equivalentes?

a2+9a20=?(a+4)(a5) a^2+9a-20\stackrel{?}{=}(a+4)(a-5)

Solución

Resolvemos el lado derecho de la ecuación usando la propiedad distributiva extendida:(a+b)×(c+d)=ac+ad+bc+bd (a+b)\times(c+d)=ac+ad+bc+bd

(a+4)(a5)=a25a+4a20 (a+4)(a-5)=a^2-5a+4a-20

a2a20 a^2-a-20

Es decir, la respuesta D es la correcta.

Respuesta

No, a -a en lugar de +9a +9a

Ejercicio #6

Simplifica la expresión dada:(a+c)(4+c) (a+c)(4+c)

Solución

Simplificamos la expresión dada, abrimos paréntesis usando la propiedad distributiva extendida:

(x+y)(t+d)=xt+xd+yt+yd (\textcolor{red}{x}+\textcolor{blue}{y})(t+d)=\textcolor{red}{x}t+\textcolor{red}{x}d+\textcolor{blue}{y}t+\textcolor{blue}{y}d Tengamos en cuenta que en la forma de la fórmula de la propiedad distributiva mencionada anteriormente, asumimos por defecto que la operación entre los términos dentro del paréntesis es una operación de suma, por lo tanto, por supuesto, no olvidaremos que el signo del coeficiente del término es parte inseparable de él, también aplicaremos las reglas de multiplicación de signos y así podremos presentar cualquier expresión entre paréntesis, que se abre mediante la fórmula anterior, primero, como una expresión en la que hay una operación de suma entre todos los términos, en esta expresión, como queda claro, para todos los términos el coeficiente es el signo más, por lo tanto vamos directamente a la apertura del paréntesis,

Comenzamos con la apertura de paréntesis:

(x+c)(4+c)x4+xc+c4+cc4x+xc+4c+c2 (\textcolor{red}{x}+\textcolor{blue}{c})(4+c)\\ \textcolor{red}{x}\cdot 4+\textcolor{red}{x}\cdot c+\textcolor{blue}{c}\cdot 4+\textcolor{blue}{c} \cdot c\\ 4x+xc+4c+c^2 Para simplificar la expresión anterior, utilizamos la ley de potencias para la multiplicación entre términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n}

En el siguiente paso entran términos semejantes, definiremos términos semejantes como términos en los que las incógnitas(cada una por separado), en este caso, x y c, tienen potencias idénticas (en ausencia de una de las incógnitas de la expresión , nos referiremos a su potencia como potencia de cero, esto se debe a que elevando cada número a la potencia de cero da como resultado 1), además usaremos la propiedad sustitutiva, además ordenaremos la expresión de mayor a la potencia más baja de izquierda a derecha (nos referiremos al número libre como la potencia de cero),

Tengamos en cuenta que en la expresión que obtuvimos en el último paso hay cuatro términos diferentes, esto se debe a que no hay ni siquiera un par de términos en los que las incógnitas (diferentes) tengan la misma potencia, además ya está ordenado según potencia como arriba, por lo tanto la expresión que ya hemos obtenido es la expresión final y más simplificada:4x+xc+4c+c2c2+xc+4x+4c \textcolor{purple}{4x}\textcolor{green}{+xc}\textcolor{black}{+4c}\textcolor{orange}{+c^2 }\\ \textcolor{orange}{c^2 }\textcolor{green}{+xc}\textcolor{purple}{+4x}\textcolor{black}{+4c}\\ Resaltamos a los diferentes términos mediante colores y, como se enfatizó antes, nos aseguramos de que el signo principal del término sea una parte integral del mismo.

Utilizamos la propiedad sustitutiva por la multiplicación para notar que la respuesta correcta es la opción A.

Respuesta

4x+cx+4c+c2 4x+cx+4c+c^2

Ejercicio #7

Una las expresiones de igual valor

  1. (ab)(c4) (a-b)(c-4)

  2. (a+b)(c+4) (a+b)(c+4)

  3. (ab)(c+4) (a-b)(c+4)

  4. (a+b)(c4) (a+b)(c-4)

    a.ac4a+bc4b ac-4a+bc-4b

    b.ac+4abc4b ac+4a-bc-4b

    c.ac4abc+4b ac-4a-bc+4b

    d.ac+4a+bc+4b ac+4a+bc+4b

Solución

Usamos todos los ejercicios de la propiedad distributiva extendida:(a+b)×(c+d)=ac+ad+bc+bd (a+b)\times(c+d)=ac+ad+bc+bd

1.(ab)(c4)=ac4abc+4b (a-b)(c-4)=ac-4a-bc+4b

2.(a+b)(c+4)=ac+4a+bc+4b (a+b)(c+4)=ac+4a+bc+4b

3.(ab)(c+4)=ac+4abc4b (a-b)(c+4)=ac+4a-bc-4b

4.(a+b)(c4)=ac4a+bc4b (a+b)(c-4)=ac-4a+bc-4b

Respuesta

1-c, 2-d, 3-b, 4-a

Ejercicio #8

Una las expresiones (en números) con las expresiones equivalentes (en letras):

  1. (2xy)(x+3) (2x-y)(x+3)

  2. (y2x)(3x) (y-2x)(3-x)

  3. (2x+y)(x3) (2x+y)(x-3)

    a.2x26x+yx3y 2x^2-6x+yx-3y

    b.2x26xyx+3y 2x^2-6x-yx+3y

    c.2x2+6xyx3y 2x^2+6x-yx-3y

Solución

Simplifica las expresiones dadas, abra paréntesis usando la propiedad distributiva extendida:

(a+b)(c+d)=ac+ad+bc+bd (\textcolor{red}{a}+\textcolor{blue}{b})(c+d)=\textcolor{red}{a}c+\textcolor{red}{a}d+\textcolor{blue}{b}c+\textcolor{blue}{b}d Tengamos en cuenta que en la forma de la fórmula para la propiedad distributiva mencionada anteriormente, asumimos por defecto que la operación entre los términos dentro del paréntesis es una suma, por lo tanto , por supuesto, no olvidaremos que el signo del coeficiente del término es un parte inseparable de él. Además, aplicaremos las reglas de multiplicación de signos y así podremos presentar cualquier expresión entre paréntesis, que se abre con la ayuda de la fórmula anterior, primero, como una expresión en la que tiene lugar una operación de suma entre todos los términos (si es necesario),

Luego simplificaremos todas y cada una de las expresiones del problema dado, respetando lo anterior, primero abriremos los paréntesis mediante la propiedad distributiva mencionada anteriormente. Luego usaremos la propiedad sustitutiva en la suma y multiplicación, e introduciremos términos semejantes (si hay términos semejantes en la expresión obtenida después de abrir los paréntesis):

  1. (2xy)(x+3)(2x+(y))(x+3)2xx+2x3+(y)x+(y)32x2+6xyx3y (2x-y)(x+3) \\ \downarrow\\ \big(2x+(-y)\big)(x+3) \\ 2x\cdot x+2x\cdot 3+(-y)\cdot x+(-y)\cdot3\\ \boxed{2x^2+6x-yx-3y}\\

  2. (y2x)(3x)(y+(2x))(3+(x))y3+y(x)+(2x)3+(2x)(x)3yxy6x+2x2 (y-2x)(3-x) \\ \downarrow\\ \big(y+(-2x)\big)\big(3+(-x)\big) \\ y\cdot 3+y\cdot (-x)+(-2x)\cdot 3+(-2x)\cdot(-x)\\ \boxed{3y-xy-6x+2x^2}\\

  3. (2x+y)(x3)(2x+y)(x+(3))2xx+2x(3)+yx+y(3)2x26x+yx3y (2x+y)(x-3) \\ \downarrow\\ (2x+y)(x+(-3)) \\ 2x\cdot x+2x\cdot (-3)+y\cdot x+y\cdot(-3)\\ \boxed{2x^2-6x+yx-3y}\\ Como puedes notar, en todas las expresiones en las que aplicamos la multiplicación entre las expresiones en los paréntesis anteriores, el resultado de la multiplicación (obtenido luego de aplicar la propiedad distributiva antes mencionada) produjo una expresión en la que no se pueden sumar términos, y esto es porque todos los términos en la expresión resultante son diferentes entre sí (recuerde que todas las incógnitas semejantes deben ser idénticas y estar en la misma potencia),

    Ahora, usemos la propiedad sustitutiva en la suma y la multiplicación para distinguir que:

    La expresión simplificada en 1 corresponde a la expresión en la opción C,

    La expresión simplificada en 2 corresponde a la expresión de la opción B,

    La expresión simplificada en 3 corresponde a la expresión de la opción A,

Por lo tanto, la respuesta correcta (entre las opciones que se ofrecen) es la opción B.

Respuesta

1-b,2-c,3-a

Ejercicio #9

Simplifica la expresión

(3a4)b+2 (3a-4)b+2

Solución

Simplificamos la expresión, abrimos los paréntesis mediante la propiedad distributiva:

x(y+z)=xy+xz x(y+z)=xy+xz Tengamos en cuenta que en la forma de la fórmula de la propiedad distributiva mencionada anteriormente asumimos por defecto que la operación entre los términos dentro del paréntesis es una operación suma, por lo tanto, por supuesto, no olvidaremos que el signo del coeficiente del término es inseparable de él. Además, aplicamos las reglas de multiplicación de signos y así podemos presentar cualquier expresión entre paréntesis, que se abre con la ayuda de la fórmula anterior, primero, como una expresión en la que hay una operación de suma entre todos los términos:

(3a4)b+2(3a+(4))b+2 (3a-4)b+2\\ \big(3a+(-4)\big)b+2 Continuamos y abrimos los paréntesis usando la propiedad distributiva:

(3a+(4))b+23ab+(4)b+23ab4b+2 \big(3a+(-4)\big)b+2\\ 3a\cdot b+(-4)\cdot b +2\\ 3ab-4b+2 Por lo tanto, la respuesta correcta es la opción c.

Respuesta

3ab4b+2 3ab-4b+2

Ejercicio #10

Resuelva,

Calcula el área del rectángulo

Deja las incógnitas en tu respuesta

3y3y3yy+3z

Solución

Recuerde que la fórmula para calcular el área del rectángulo: ancho X largo

S=wh S=w⋅h

Cuando:

S = área

w = ancho = width

h = altura = high

Tomamos datos de los lados del rectángulo de la figura.

w=3y w=3y h=y+3z h=y+3z

Ahora reemplazamos en la fórmula para calcular el área del rectángulo:

S=wh=(y+3z)(3y) S=w⋅h=(y+3z)(3y)

Utilizamos la fórmula de la propiedad distributiva:

a(b+c)=ab+ac a\left(b+c\right)=ab+ac

Reemplazamos y resolvemos:

S=(y+3z)(3y)=(3y)(y+3z) S=(y+3z)(3y)=(3y)(y+3z)

(3y)(y+3z)=(3y)(y)+(3y)(3z) (3y)(y+3z)=(3y)(y)+(3y)(3z)

(3y)(y)+(3y)(3z)=3y2+9yz (3y)(y)+(3y)(3z)=3y^2+9yz

Tenga en cuenta que debido a que hay una operación de multiplicación, el orden de los términos en la expresión se puede cambiar y, por lo tanto,

(y+3z)(3y)=(3y)(y+3z) (y+3z)(3y)=(3y)(y+3z)

Por lo tanto, la respuesta correcta es la opción D: 3y2+9yz 3y^2+9yz

Respuesta

3y2+9yz 3y^2+9yz

Ejercicio #11

Calcula el área del rectángulo

y+2y+2y+2x+5x+5x+5

Solución

Recuerde que la fórmula para calcular el área del rectángulo: ancho X largo

S=wh S=w⋅h

Cuando:

S = área

w = ancho = width

h = altura = high

Tomamos datos de los lados del rectángulo de la figura.

w=x+5 w=x+5 h=y+2 h=y+2

Ahora reemplazamos en la fórmula para calcular el área del rectángulo:

S=wh=(x+5)(y+2) S=w⋅h=(x+5)(y+2)

Utilizamos la fórmula de la propiedad distributiva extendida:

(a+b)(c+d)=ac+ad+bc+bd (a+b)(c+d)=ac+ad+bc+bd

Reemplazamos y resolvemos:

S=(x+5)(y+2)=(x)(y)+(x)(2)+(5)(y)+(5)(2) S=(x+5)(y+2)=(x)(y)+(x)(2)+(5)(y)+(5)(2)

(x)(y)+(x)(2)+(5)(y)+(5)(2)=xy+2x+5y+10 (x)(y)+(x)(2)+(5)(y)+(5)(2)=xy+2x+5y+10

Por lo tanto, la respuesta correcta es la opción C: xy+2x+5y+10.

Respuesta

xy+2x+5y+10 xy+2x+5y+10

Ejercicio #12

Calcula el área del rectángulo

a+3a+3a+3b+8b+8b+8

Deja las incógnitas en tu respuesta

Solución

Recuerde que la fórmula para calcular el área del rectángulo: ancho X largo

S=wh S=w⋅h

Cuando:

S = área

w = ancho = width

h = altura = high

Tomamos datos de los lados del rectángulo de la figura.w=b+8 w=b+8 h=a+3 h=a+3

Ahora reemplazamos en la fórmula para calcular el área del rectángulo:

S=wh=(b+8)(a+3) S=w⋅h = (b+8)(a+3)

Utilizamos la fórmula de la propiedad distributiva extendida:

(a+b)(c+d)=ac+ad+bc+bd (a+b)(c+d)=ac+ad+bc+bd

Reemplazamos y resolvemos:

S=(b+8)(a+3)=(b)(a)+(b)(3)+(8)(a)+(8)(3) S=(b+8)(a+3)=(b)(a)+(b)(3)+(8)(a)+(8)(3)

(b)(a)+(b)(3)+(8)(a)+(8)(3)=ab+3b+8a+24 (b)(a)+(b)(3)+(8)(a)+(8)(3)=ab+3b+8a+24

Por lo tanto, la respuesta correcta es la opción B: ab+8a+3b+24.

Tenga en cuenta que, debido a que solo hay operaciones de suma, el orden de los términos en la expresión se puede cambiar y, por lo tanto,

ab+3b+8a+24=ab+8a+3b+24 ab+3b+8a+24=ab+8a+3b+24

Respuesta

ab+8a+3b+24

¿Cuántos ejercicios y ejemplos de la propiedad distributiva con ampliación es necesario realizar?

La cantidad de ejercicios y ejemplos de propiedad distributiva que debemos practicar, varía de persona en persona.
En general, recomendamos resolver muchas pruebas y observar varios ejemplos para que, en total, estos cubran la mayor cantidad de tipos de ejercicios posibles.
Cuanto más ejercites con la propiedad distributiva, comprenderás el tema más profundamente y aumentará la probabilidad de que te vaya bien y que tengas éxito.

Las preguntas más nuevas