ejemplos con soluciones para Paréntesis en orden avanzado de operaciones: ¿Es correcta la igualdad?

Ejercicio #1

Indica el signo correspondiente:

116(125+316):22 (523+6):714 \frac{1}{\sqrt{16}}\cdot(125+3-\sqrt{16}):2^2\text{ }\textcolor{red}{_—}(5^2-3+6):7\cdot\frac{1}{4}

Solución en video

Solución Paso a Paso

Para resolver un problema dado en adición o en sustracción separar cada uno de los dígitos que componen el número,

esto se hace dentro del marco de la jerarquía de operaciones que indica que la multiplicación y división preceden a la adición y sustracción y que las operaciones precedentes se realizan primero,

A. Comenzaremos con los dígitos que están a la izquierda en el problema dado:

116(125+316):22 \frac{1}{\sqrt{16}}\cdot(125+3-\sqrt{16}):2^2 Primero separamos los dígitos que se encuentran en los denominadores de acuerdo a la jerarquía de operaciones mencionada, esto se hace mediante el cálculo de su valor numérico que fortalece (esto dentro de que recordamos que al definir la raíz como fuerte, la raíz misma es fuerte para todo) y luego realizamos la operación de adición y sustracción:

116(125+316):22=116(125+34):22=116124:22 \frac{1}{\sqrt{16}}\cdot(125+3-\sqrt{16}):2^2 =\\ \frac{1}{\sqrt{16}}\cdot(125+3-4):2^2 =\\ \frac{1}{\sqrt{16}}\cdot124:2^2 Continuaremos calculando los valores numéricos del numerador que fue pasado por la fortaleza (de hecho, si representamos la operación de división como una fractura, este numerador sería en el estado fracturado) y así como también el valor numérico del numerador en la fortaleza que está en el estado fracturado en los dígitos, luego realizamos la operación de multiplicación y división:

116124:22=14124:4=11244:4=1̸24:4=31:4=314=734 \frac{1}{\sqrt{16}}\cdot124:2^2 =\\ \frac{1}{4}\cdot124:4 =\\ \frac{1\cdot124}{4}:4=\\ \frac{\not{124}}{\not{4}}:4=\\ 31:4=\\ \frac{31}{4}=\\ 7\frac{3}{4} En los pasos finales multiplicamos el número 124 en fractura, esto lo hacemos dentro de que recordamos que la multiplicación en fractura significa la multiplicación en el estado fracturado, luego realizamos la operación de división del fracturado (por la compresión del fracturado) y en el paso final realizamos la operación de división en el número 4, esta operación resulta en una respuesta completa, por lo tanto, la marcamos como fracturada (fractura completa, indicando que el denominador es mayor que el numerador) y continuamos el fracturado completo a fracturado mixto, por la extracción de los completos (la respuesta a la pregunta: "¿Cuántas veces el denominador entra en el numerador?") y la adición del residuo al denominador,

Terminamos de simplificar los dígitos que están a la izquierda en el problema dado, resumimos los pasos de simplificación:

Recibimos que:

116(125+316):22=116124:22=11244:4=734 \frac{1}{\sqrt{16}}\cdot(125+3-\sqrt{16}):2^2 =\\ \frac{1}{\sqrt{16}}\cdot124:2^2 =\\ \frac{1\cdot124}{4}:4=\\ 7\frac{3}{4}

B. Continuaremos y simplificaremos los dígitos que están a la derecha en el problema dado:

(523+6):714 (5^2-3+6):7\cdot\frac{1}{4} En esta parte realizaremos la simplificación de los dígitos dentro del marco de la jerarquía de operaciones,

En estos dígitos se establece la operación de división inicial sobre los dígitos en los denominadores, por lo tanto, comenzaremos simplificando estos dígitos,

Recordemos que la multiplicación y división preceden a la adición y sustracción, por lo tanto, comenzaremos calculando el valor numérico del numerador en la fortaleza que está en estos dígitos, luego realizaremos la operación de adición y sustracción:

(523+6):714=(253+6):714=28:714 (5^2-3+6):7\cdot\frac{1}{4} =\\ (25-3+6):7\cdot\frac{1}{4} =\\ 28:7\cdot\frac{1}{4} Continuaremos y simplificaremos el dígito recibido, dado que entre multiplicación y división no hay precedencia definida en la jerarquía de operaciones mencionada, realizamos las operaciones de estos dígitos una tras otra de izquierda a derecha, que es el orden natural de operaciones:

28:714=414=414==1 28:7\cdot\frac{1}{4} =\\ 4\cdot\frac{1}{4} =\\ \frac{4\cdot1}{4}=\\ \frac{\not{4}}{\not{4}}=\\ 1 En el segundo paso multiplicamos en fractura, esto dentro de que recordamos (nuevamente) que la multiplicación en fractura significa la multiplicación en el estado fracturado, en el siguiente paso realizamos la operación de división del fracturado (por la compresión del fracturado).

Terminamos de simplificar los dígitos que están a la derecha en el problema dado, resumimos los pasos de simplificación:

Recibimos que:

(523+6):714=28:714==1 (5^2-3+6):7\cdot\frac{1}{4} =\\ 28:7\cdot\frac{1}{4} =\\ \frac{\not{4}}{\not{4}}=\\ 1 Volveremos al problema original, y presentaremos los resultados de simplificar los dígitos que se reportaron en A y en B:

116(125+316):22 (523+6):714734 1 \frac{1}{\sqrt{16}}\cdot(125+3-\sqrt{16}):2^2\text{ }\textcolor{red}{_—}(5^2-3+6):7\cdot\frac{1}{4} \\ \downarrow\\ 7\frac{3}{4} \text{ }\textcolor{red}{_—}1 Como resultado obtenemos que:

734 1 7\frac{3}{4} \text{ }\textcolor{red}{\neq}1 Por lo tanto, la respuesta correcta aquí es respuesta B.

Respuesta

\ne

Ejercicio #2

Indique si la igualdad es verdadera o no.

34(2522)(234)=3425(2223)4 3^4-(\sqrt{25}-2^2)-(2^3-\sqrt{4})=3^4-\sqrt{25}-(2^2-2^3)-\sqrt{4}

Solución en video

Respuesta

No verdadero

Ejercicio #3

Indique si la igualdad es verdadera o no.

53:(42+32)(10082)=53:42+32100+82 5^3:(4^2+3^2)-(\sqrt{100}-8^2)=5^3:4^2+3^2-\sqrt{100}+8^2

Solución en video

Respuesta

Verdadero

Ejercicio #4

Indique si la igualdad es verdadera o no.

53(42+32)(100+82)=53423210082 5^3-(4^2+3^2)-(\sqrt{100}+8^2)=5^3-4^2-3^2-\sqrt{100}-8^2

Solución en video

Respuesta

Verdadero

Ejercicio #5

Indique si la igualdad es verdadera o no.

53:(42+32)(10082)=53:42+32100+82 5^3:(4^2+3^2)-(\sqrt{100}-8^2)=5^3:4^2+3^2-\sqrt{100}+8^2

Solución en video

Respuesta

No verdadero

Ejercicio #6

Indique si la igualdad es verdadera o no.

(52+3):22=52+3:22 (5^2+3):2^2=5^2+3:2^2

Solución en video

Respuesta

Falso

Ejercicio #7

Indique si la igualdad es verdadera o no.

23(6273):(361)+4=(4352):(2+1)2 2^3\cdot(6^2-7\cdot3):(\sqrt{36}-\sqrt{1})+\sqrt{4}=(4^3-5^2):(2+1)\cdot2

Solución en video

Respuesta

Verdadero

Ejercicio #8

Determina si la igualdad es verdadera o no.

36(429)+4=2510000+95100 \sqrt{36}-(4^2-9)+\sqrt{4}=\sqrt{\frac{25}{10000}}+\frac{95}{100}

Solución en video

Respuesta

Verdadero

Ejercicio #9

Indique si la igualdad es verdadera o no.

34:(25+22)23:4=34:25+(2223):4 3^4:(\sqrt{25}+2^2)-2^3:\sqrt{4}=3^4:\sqrt{25}+(2^2-2^3):\sqrt{4}

Solución en video

Respuesta

No verdadero

Ejercicio #10

Indique si la igualdad es verdadera o no.

43+(49+64)+22=(43+49)+64+22 4^3+(\sqrt{49}+\sqrt{64})+2^2=(4^3+\sqrt{49})+\sqrt{64}+2^2

Solución en video

Respuesta

Verdadero

Ejercicio #11

Indique si la igualdad es verdadera o no.

43(49+64)22=(4349)+6422 4^3-(\sqrt{49}+\sqrt{64})\cdot2^2=(4^3-\sqrt{49})+\sqrt{64}\cdot2^2

Solución en video

Respuesta

No verdadero