ejemplos con soluciones para Paréntesis en orden avanzado de operaciones: Uso del paréntesis

Ejercicio #1

Resuelve el ejercicio:

3:(4+5)96= 3:(4+5)\cdot9-6=

Solución en video

Solución Paso a Paso

Resolvemos el ejercicio entre paréntesis:

3:996= 3:9\cdot9-6=

3996= \frac{3}{9}\cdot9-6=

Simplificamos y restamos:

36=3 3-6=-3

Respuesta

-3

Ejercicio #2

Resuelve el ejercicio:

3(41)+5:1= 3\cdot(4-1)+5:1=

Solución en video

Solución Paso a Paso

Resolvemos el ejercicio entre paréntesis:33+5:1= 3\cdot3+5:1=

Colocamos entre paréntesis los ejercicios de multiplicación y división:

(33)+(5:1)= (3\cdot3)+(5:1)=

Resolvemos los ejercicios entre paréntesis:

9+5=14 9+5=14

Respuesta

14 14

Ejercicio #3

Resuelve el ejercicio:

423:(1+3)= 4\cdot2-3:(1+3)=

Solución en video

Solución Paso a Paso

Primero resolvemos el ejercicio entre paréntesis:

423:4= 4\cdot2-3:4=

Colocamos entre paréntesis los ejercicios de multiplicación y división:

(42)(3:4)= (4\cdot2)-(3:4)=

Resolvemos los ejercicios entre paréntesis:

834=714 8-\frac{3}{4}=7\frac{1}{4}

Respuesta

714 7\frac{1}{4}

Ejercicio #4

Resuelva la siguiente ecuación:

400 ⁣:(5)[2(9361)]4= \frac{400\colon(-5)-\lbrack-2(93-61)\rbrack}{4}=

Solución en video

Solución Paso a Paso

Nos referimos al numerador de fracciones, primero resolvemos el ejercicio de división y el ejercicio entre paréntesis:

400:(5)=80 400:(-5)=-80

(9361)=32 (93-61)=32

Ahora obtenemos:

80(2×32)4= \frac{-80-(-2\times32)}{4}=

Resolvemos los paréntesis del numerador de fracciones, primero los paréntesis:

80(64)4= \frac{-80-(-64)}{4}=

Recordemos que menos por menos es igual a más:

80+644= \frac{-80+64}{4}=

164=4 \frac{-16}{4}=-4

Respuesta

4 -4

Ejercicio #5

Marque la respuesta correcta:

(25216)2+38+5:9= \frac{(25-2-16)^2+3}{8+5}:\sqrt{9}=

Solución en video

Solución Paso a Paso

Este concepto básico se llama la jerarquía de las operaciones matemáticas, que establece que la multiplicación y la división se realizan antes que la suma y la resta, y que las operaciones dentro de los paréntesis tienen prioridad sobre todas ellas,

Recordemos que la suma y la resta son operaciones inversas entre sí (cada una deshace a la otra) y que la multiplicación y la división son operaciones inversas entre sí (en su totalidad) que se realizan entre ellas la operación de división, es decir, podemos tratar la suma y la resta como fracciones que se suman o restan, de esta manera podemos simplificar la fracción dada y escribirla de la siguiente manera:

(25216)2+38+5:9=((25216)2+3):(8+5):9 \frac{(25-2-16)^2+3}{8+5}:\sqrt{9}= \\ \downarrow\\ \big((25-2-16)^2+3\big):(8+5):\sqrt{9} Esto se hace para enfatizar que las fracciones que se suman o restan deben tratarse por separado, ya que realmente existen como fracciones,

Regresando al concepto original de la pregunta, es decir, en la forma dada, y simplificando por separado las fracciones que se suman o restan en la pregunta y las fracciones que se multiplican, esto se hace en conformidad con la jerarquía de las operaciones matemáticas mencionada anteriormente y de una manera ordenada,

Recordemos que en la fracción dada, las fracciones que se multiplican cambian la fracción en términos de su fortaleza, por lo tanto, comenzaremos simplificando esta fracción, ya que esta fracción incluye solo multiplicación y división, realizamos las operaciones en conformidad con la jerarquía de las operaciones matemáticas naturales, es decir, de izquierda a derecha, simplificando la fracción que se multiplica:

(25216)2+38+5:9=72+313:9 \frac{(25-2-16)^2+3}{8+5}:\sqrt{9}=\\ \frac{7^2+3}{13}:\sqrt{9}\\ Continuaremos y simplificaremos la fracción que recibimos en el paso anterior, es decir, primero realizaremos la operación de división del divisor, esto se hace mediante simplificación, y luego realizaremos la operación de división restante:

72+313:9=49+313:3=5213:3 \frac{7^2+3}{13}:\sqrt{9}=\\ \frac{49+3}{13}:3=\\ \frac{52}{13}:3\\ En el primer paso, dado que el resultado de la operación de división puede ser una fracción impropia (mayor que un entero, dado que el divisor es mayor que el dividendo) lo anotamos como una fracción mixta (donde el entero es mayor que el denominador),

Resumiremos los pasos de simplificación de la fracción dada, hemos encontrado que:

5̸21̸3:3=4:3=43 \frac{\not{52}}{\not{13}}:3=\\ 4:3=\\ \frac{4}{3} Por lo tanto, la respuesta correcta es la respuesta B.

Nota:

Recordemos que en el conjunto de los últimos pasos de la solución al problema, podemos comenzar a anotar el divisor y la operación de división que se realiza sobre él incluso sin el divisor, pero mediante la operación de división:

(25216)2+38+5:9=72+313:9=5213:3=43 \frac{(25-2-16)^2+3}{8+5}:\sqrt{9}=\\ \frac{7^2+3}{13}:\sqrt{9}=\\ \frac{52}{13}:3=\\ \frac{4}{3} Y continuando comenzaremos a calcular la operación de división en el divisor y solo después de hacerlo en el número 3, enfatizamos que en general simplificamos esta fracción en conformidad con la jerarquía de las operaciones matemáticas naturales, es decir, realizamos las operaciones una tras otra de izquierda a derecha, y esto significa que no hay prioridad para una operación de división en la fracción dada más allá de lo que está determinado por la jerarquía de las operaciones matemáticas naturales, es decir, de izquierda a derecha, (Recordemos además que la jerarquía de las operaciones matemáticas mencionada al principio del problema, que establece que la multiplicación y la división se realizan antes que la suma y la resta, y que las operaciones dentro de los paréntesis tienen prioridad sobre todas ellas, no define una prioridad incluso entre la multiplicación y la división, y por lo tanto el orden entre estas dos operaciones, en diferentes contextos, es diferente, se considera de izquierda a derecha).

Respuesta

43 \frac{4}{3}

Ejercicio #6

2×(3+12×8)= 2\times(3+\frac{1}{2}\times8)=

Solución en video

Solución Paso a Paso

Según las reglas del orden de las operaciones aritméticas, los paréntesis van primero.

Dentro de los paréntesis primero resolveremos el ejercicio de multiplicación y luego la suma.

Para facilitar la resolución del ejercicio de multiplicación, convertiremos el 8 en una fracción simple:

2×(3+12×81)=2×(3+82)=2×(3+4) 2\times(3+\frac{1}{2}\times\frac{8}{1})=2\times(3+\frac{8}{2})=2\times(3+4)

Ahora resolvemos el ejercicio de suma entre paréntesis y finalmente multiplicamos:

2×7=14 2\times7=14

Respuesta

14 14