ejemplos con soluciones para Tipos de triangulos: Uso de variables

Ejercicio #1

Dado un triángulo equilátero:

XXX

El perímetro del triángulo es 33 cm, ¿cuál es el valor de X?

Solución en video

Solución Paso a Paso

Sabemos que en un triángulo equilátero todos los lados son iguales,

Por lo tanto, si sabemos que un lado es igual a X, todos los lados son iguales a X.

Sabemos que el perímetro del triángulo es 33.

El perímetro del triángulo es igual a la suma de los lados juntos.

Reemplazamos los datos:

x+x+x=33 x+x+x=33

3x=33 3x=33

Dividimos las dos secciones por 3:

3x3=333 \frac{3x}{3}=\frac{33}{3}

x=11 x=11

Respuesta

11

Ejercicio #2

Dado el triángulo:

2X2X2X3.5X3.5X3.5X3X3X3X

El perímetro del triángulo es 17

¿Cuál es el valor de X?

Solución en video

Solución Paso a Paso

Sabemos que que el perímetro de un triángulo es igual a la suma de todos los lados juntos, por lo que reemplazamos los datos:

3x+2x+3.5x=17 3x+2x+3.5x=17

8.5x=17 8.5x=17

Dividimos las dos secciones por 8.5:

8.5x8.5=178.5 \frac{8.5x}{8.5}=\frac{17}{8.5}

x=2 x=2

Respuesta

2

Ejercicio #3

triángulo ABC es rectángulo

El área del triángulo es 6 cm²

Calcula a X y el largo del lado BC

S=6S=6S=6444X-1X-1X-1X+1X+1X+1AAACCCBBB

Solución en video

Solución Paso a Paso

Utilizamos la fórmula para calcular el área del triángulo rectángulo:

ACBC2=cateto×cateto2 \frac{AC\cdot BC}{2}=\frac{cateto\times cateto}{2}

Y compara la expresión con el área del triángulo 6 6

4(X1)2=6 \frac{4\cdot(X-1)}{2}=6

Duplicar la ecuación por el denominador común significa que multiplicamos por 2 2

4(X1)=12 4(X-1)=12

Abrimos los paréntesis antes de la propiedad distributiva

4X4=12 4X-4=12 / +4 +4

4X=16 4X=16 / :4 :4

X=4 X=4

Reemplazamos X=4 X=4 en la expresión BC BC y

encontramos:

BC=X1=41=3 BC=X-1=4-1=3

Respuesta

X=4 BC=3