\( \log_23-\log_2(x+3)\le8 \)
\( x\ge\frac{3}{256}-3 \)
\( x>-3 \)
\( x=\text{?} \)
\( \log_{\frac{1}{2}}5-\log_{\frac{1}{2}}4\le\log_{\frac{1}{2}}x-\log_{\frac{1}{2}}3 \)
\( 0 < x\le3.75 \)
\( x\geqslant3.75 \)
\( \log_{13}(2x^2+3)-\log_{13}2\le\log_{13}7-\log_{13}x^2 \)
\( -\sqrt{2}\ge x,x\ge\sqrt{2} \)
\( -\sqrt{2}\le x\le\sqrt{2} \)
log23−log2(x+3)≤8 \log_23-\log_2(x+3)\le8 log23−log2(x+3)≤8
x≥3256−3 x\ge\frac{3}{256}-3 x≥2563−3
x=? x=\text{?} x=?
log125−log124≤log12x−log123 \log_{\frac{1}{2}}5-\log_{\frac{1}{2}}4\le\log_{\frac{1}{2}}x-\log_{\frac{1}{2}}3 log215−log214≤log21x−log213
0<x≤3.75 0 < x\le3.75 0<x≤3.75
log13(2x2+3)−log132≤log137−log13x2 \log_{13}(2x^2+3)-\log_{13}2\le\log_{13}7-\log_{13}x^2 log13(2x2+3)−log132≤log137−log13x2
−2≤x≤2 -\sqrt{2}\le x\le\sqrt{2} −2≤x≤2