log7x+log(x+1)−log7=log2x−logx
?=x
\( \log7x+\log(x+1)-\log7=\log2x-\log x \)
\( ?=x \)
\( \log4x+\log2-\log9=\log_24 \)
?=x
\( \log_9e^3\times(\log_224-\log_28)(\ln8+\ln2) \)
\( \log_64\times\log_9x=(\log_6x^2-\log_6x)(\log_92.5+\log_91.6) \)
Calcula el valor de la siguiente expresión:
\( \ln4\times(\log_7x^7-\log_7x^4-\log_7x^3+\log_2y^4-\log_2y^3-\log_2y) \)
Domino de definición
x>0
x+1>0
x>-1
Reducimos por: y por
No dominio de definición x>0
Dominio de definición
?=x
Para todos 0 < x
Calcula el valor de la siguiente expresión:
\( \frac{\log_76-\log_71.5}{3\log_72}\cdot\frac{1}{\log_{\sqrt{8}}2}= \)
\( -3(\frac{\ln4}{\ln5}-\log_57+\frac{1}{\log_65})= \)
\( \log_3x^2\log_527-\log_58=\ln e \)
Encuentra a X
\( \ln8x\times\log_7e^2=2(\log_78+\log_7x^2-\log_7x) \)
Halla a X:
\( \ln x+\ln(x+1)-\ln2=3 \)
Encuentra a X
Para todos x>0
Halla a X:
\( \log_x16\times\frac{\ln7-\ln x}{\ln4}-\log_x49= \)
\( \log_49x+\log_4(x+4)-\log_43=\ln2e+\ln\frac{1}{2e} \)
Encuentra a X
\( \log_5x+\log_5(x+2)+\log_25-\log_22.5=\log_37\times\log_79 \)
\( (2\log_32+\log_3x)\log_23-\log_2x=3x-7 \)
\( x=\text{?} \)
Dado 0<a , halla a X:
\( \log_{2a}e^7(\ln a+\ln4a)=\log_4x-\log_4x^2+\log_4\frac{1}{x+1} \)
Encuentra a X
Dado 0<a , halla a X:
\( \log_59(\log_34x+\log_3(4x+1))=2(\log_54a^3-\log_52a) \)
Dado a>0 , halla a X y exprese mediante a
\( \log_ax\log_by\log_c2=(\log_ay^3-\log_ay^2)(\log_b\frac{1}{2}+\log_b2^2)\log_c(x^2+1) \)
Dado a>0 , halla a X y exprese mediante a
No hay solución