Potencias - casos especiales - Ejemplos, Ejercicios y Soluciones

Potenciación - Casos especiales

Potenciación de números negativos

Cuando se eleva un número negativo a cierta potencia, el resultado puede ser tanto positivo como negativo.
Lo sabremos sólo por el exponente, según sea par o impar.

Potencias con exponente 0

Todo número elevado a 00 equivale a 11. (A excepción de 00)
Independientemente del número que elevemos a 00, siempre el resultado será 1.

Potencias con exponente entero negativo

En los ejercicios que tienen cierto exponente negativo, convertiremos el término en fracción mientras que:
en el numerador haya 11 y en el denominador, la base de la potencia elevada a un exponente positivo.

Practicar Potencias - casos especiales

ejemplos con soluciones para Potencias - casos especiales

Ejercicio #1

50= 5^0=

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación:

X0=1 X^0=1 Lo aplicamos en el problema:

50=1 5^0=1 Por lo tanto, la respuesta correcta es C.

Respuesta

1 1

Ejercicio #2

(14)1 (\frac{1}{4})^{-1}

Solución en video

Solución Paso a Paso

Utilizamos la propiedad de potencias para un exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} Anotaremos la fracción entre paréntesis como una potencia negativa con la ayuda de la potencia anteriormente mencionada:

14=141=41 \frac{1}{4}=\frac{1}{4^1}=4^{-1} Retornamos al problema, donde obtuvimos:

(14)1=(41)1 \big(\frac{1}{4}\big)^{-1}=(4^{-1})^{-1} Continuamos y usamos la propiedad de potencias de un exponente elevado a otro exponente:

(am)n=amn (a^m)^n=a^{m\cdot n} Y lo aplicamos en el problema:

(41)1=411=41=4 (4^{-1})^{-1}=4^{-1\cdot-1}=4^1=4 Por lo tanto, la respuesta correcta es la opción d.

Respuesta

4 4

Ejercicio #3

52 5^{-2}

Solución en video

Solución Paso a Paso

Utilizamos la propiedad de potencias de un exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} Lo aplicamos en el problema:

52=152=125 5^{-2}=\frac{1}{5^2}=\frac{1}{25}

Por lo tanto, la respuesta correcta es la opción d.

Respuesta

125 \frac{1}{25}

Ejercicio #4

41=? 4^{-1}=\text{?}

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación de un exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} Lo aplicamos en el problema:

41=141=14 4^{-1}=\frac{1}{4^1}=\frac{1}{4} Por lo tanto, la respuesta correcta es la opción B.

Respuesta

14 \frac{1}{4}

Ejercicio #5

724=? 7^{-24}=\text{?}

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación de un exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} Lo aplicamos en el problema:

724=1724 7^{-24}=\frac{1}{7^{24}} Por lo tanto, la respuesta correcta es la opción D.

Respuesta

1724 \frac{1}{7^{24}}

Ejercicio #6

192=? 19^{-2}=\text{?}

Solución en video

Solución Paso a Paso

Para resolver el ejercicio, usamos la propiedad de potenciación de un exponente negativo

an=1an a^{-n}=\frac{1}{a^n}

Usamos la propiedad para resolver el ejercicio:

192=1192 19^{-2}=\frac{1}{19^2}

Podemos continuar y resolver la potencia

1192=1361 \frac{1}{19^2}=\frac{1}{361}

Respuesta

1361 \frac{1}{361}

Ejercicio #7

183=? \frac{1}{8^3}=\text{?}

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación para un exponente negativo:

bn=1bn b^{-n}=\frac{1}{b^n} Lo aplicamos en el problema:

183=83 \frac{1}{8^3}=8^{-3} Cuando usamos esta propiedad mencionada anteriormente en el sentido contrario.

Por lo tanto, la respuesta correcta es la opción A.

Respuesta

83 8^{-3}

Ejercicio #8

129=? \frac{1}{2^9}=\text{?}

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación para un exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} Lo aplicamos en la expresión que obtuvimos:

129=29 \frac{1}{2^9}=2^{-9}

Por lo tanto, la respuesta correcta es la opción A.

Respuesta

29 2^{-9}

Ejercicio #9

1123=? \frac{1}{12^3}=\text{?}

Solución en video

Solución Paso a Paso

Primero, recordamos la propiedad de potenciación para un exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} Lo aplicamos en la expresión que obtuvimos:

1123=123 \frac{1}{12^3}=12^{-3} Por lo tanto, la respuesta correcta es la opción A.

Respuesta

123 12^{-3}

Ejercicio #10

1120=? 112^0=\text{?}

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación del cero.

X0=1 X^0=1 Obtenemos

1120=1 112^0=1 Por lo tanto, la respuesta correcta es la opción C.

Respuesta

1

Ejercicio #11

[(17)1]4= [(\frac{1}{7})^{-1}]^4=

Solución en video

Solución Paso a Paso

Utilizamos la propiedad de potencias de un exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} Anotaremos la fracción entre paréntesis como una potencia negativa con la ayuda de la potencia anteriormente mencionada:

17=71 \frac{1}{7}=7^{-1} Retornemos al problema, donde obtuvimos:

((17)1)4=((71)1)4 \bigg( \big( \frac{1}{7}\big)^{-1}\bigg)^4=\big((7^{-1})^{-1} \big)^4 Continuamos y usamos la propiedad de potencias de un exponente elevado a otro exponente:

(am)n=amn (a^m)^n=a^{m\cdot n} Y lo aplicamos en el problema:

((71)1)4=(711)4=(71)4=714=74 \big((7^{-1})^{-1} \big)^4 =(7^{-1\cdot-1})^4=(7^1)^4=7^{1\cdot4}=7^4 Por lo tanto, la respuesta correcta es la opción c

Respuesta

74 7^4

Ejercicio #12

25=? 2^{-5}=\text{?}

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación de un exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} Lo aplicamos en el problema:

25=125=132 2^{-5}=\frac{1}{2^5}=\frac{1}{32} Por lo tanto, la respuesta correcta es la opción A.

Respuesta

132 \frac{1}{32}

Ejercicio #13

(7)3=? (-7)^{-3}=\text{?}

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación para un exponente negativo:

bn=1bn b^{-n}=\frac{1}{b^n} Lo aplicamos en el problema:

(7)3=1(7)3 (-7)^{-3}=\frac{1}{(-7)^3} Cuando notamos que cada número entero entre paréntesis se eleva a una potencia negativa (es decir, el número y su coeficiente negativo juntos), al usar la propiedad de potenciación mencionada anteriormente fuimos cuidadosos y tomamos este hecho en cuenta,

Continuamos simplificando la expresión en el denominador de la fracción, recordando la propiedad de potenciación para la potencia de términos en la multiplicación:

(am)n=amn (a^m)^n=a^{m\cdot n} Aplicamos la expresión que obtuvimos:

1(7)3=1(17)3=1(1)373=1173=173=173 \frac{1}{(-7)^3}=\frac{1}{(-1\cdot7)^3}=\frac{1}{(-1)^3\cdot7^3}=\frac{1}{-1\cdot7^3}=\frac{1}{-7^3}=-\frac{1}{7^3}

Resumiendo la solución al problema, obtuvimos que:

(7)3=1(7)3=173=173 (-7)^{-3}=\frac{1}{(-7)^3}=\frac{1}{-7^3}=-\frac{1}{7^3}

Por lo tanto, la respuesta correcta es la opción B.

Respuesta

173 -\frac{1}{7^{3}}

Ejercicio #14

a4=? a^{-4}=\text{?}

(a0) (a\ne0)

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación de un exponente negativo:

bn=1bn b^{-n}=\frac{1}{b^n} Lo aplicamos en el problema:

a4=1a4 a^{-4}=\frac{1}{a^4} Por lo tanto, la respuesta correcta es la opción B.

Respuesta

1a4 \frac{1}{a^4}

Ejercicio #15

1(2)7=? \frac{1}{(-2)^7}=?

Solución en video

Solución Paso a Paso

Primero nos ocupamos de la expresión en el denominador de la fracción y recordamos de acuerdo a la propiedad de potenciación de un exponente elevado a otro exponente:

(am)n=amn (a^m)^n=a^{m\cdot n} Obtenemos que:

(2)7=(12)7=(1)727=127=27 (-2)^7=(-1\cdot2)^7=(-1)^7\cdot2^7=-1\cdot2^7=-2^7 Regresamos al problema y aplicamos lo dicho anteriormente:

1(2)7=127=11127=127 \frac{1}{(-2)^7}=\frac{1}{-2^7}=\frac{1}{-1}\cdot\frac{1}{2^7}=-\frac{1}{2^7} Cuando en el último paso recordamos que:

11=1 \frac{1}{-1}=-1 A continuación recordamos la propiedad de potenciación para una potencia negativa

an=1an a^{-n}=\frac{1}{a^n} Lo aplicamos a la expresión que obtuvimos en el último paso:

127=27 -\frac{1}{2^7}=-2^{-7} Resumamos los pasos de la solución:

1(2)7=127=27 \frac{1}{(-2)^7}=-\frac{1}{2^7} = -2^{-7}

Por lo tanto, la respuesta correcta es la opción C.

Respuesta

(2)7 (-2)^{-7}