Ejemplos, ejercicios y soluciones con trapecios isósceles

¿Quieres aprender a reconocer un trapecio isósceles?

¡Lo primordial en el estudio de las matemáticas, como ya lo sabes, es la práctica!
En esta página encontrarás más de 5 ejemplos y ejercicios con soluciones sobre la identificación de un trapecio isósceles para que puedas practicar por tu cuenta y profundizar tus conocimientos.

🏆Ejercicios de trapecio isósceles

¿Por qué es importante que practiques sobre trapecios isósceles para niños?

Incluso si ya sabemos reconocer un trapecio isósceles y estamos seguros de haber entendido el asunto en general, ¡es fundamental que intentes resolver ejercicios por tu cuenta!
Vale la pena experimentar tantos tipos de preguntas como sea posible y analizar la mayor cantidad de ejemplos sobre trapecios isósceles y sus características clave.
Solo practicando y resolviendo un amplio número de preguntas y ejercicios con trapecios isósceles para niños, podrás asimilar a fondo el tema y adquirirás las herramientas necesarias para enfrentar cualquier desafío por tus propios medios.

Preguntas básicas

Ejemplos y ejercicios con soluciones de identificación de trapecios isósceles para niños

Ejercicio #1

Dado: C=2x ∢C=2x

A=120° ∢A=120°

trapecio isósceles.

Halla a x.

AAABBBDDDCCC120°2x

Solución

Dado que el trapecio es isósceles y los ángulos en ambos lados son iguales, se puede argumentar que:

C=D ∢C=∢D

A=B ∢A=∢B

Sabemos que la suma de los ángulos de un cuadrilátero es 360 grados.

Por lo tanto podemos crear la fórmula:

A+B+C+D=360 ∢A+∢B+∢C+∢D=360

Reemplazamos de acuerdo a los datos existentes:

120+120+2x+2x=360 120+120+2x+2x=360

 240+4x=360 240+4x=360

4x=360240 4x=360-240

4x=120 4x=120

Dividimos las dos secciones por 4:

4x4=1204 \frac{4x}{4}=\frac{120}{4}

x=30 x=30

Respuesta

30°

Ejercicio #2

¿En todos los trapecios isósceles las bases son iguales?

Solución

La respuesta es sí, ya que según la ley en todo trapecio isósceles los ángulos de la base son iguales entre sí.

Respuesta

Verdadero

Ejercicio #3

Dado que: el perímetro del trapecio es igual a 22 cm

AB= 7 cm

AC= 3 cm

BD= 3 cm

Halla el tamaño de CD.

AAABBBDDDCCC733

Solución

Como nos dan el perímetro del trapecio y no la longitud de CD, podemos calcular:

22=3+3+7+CD 22=3+3+7+CD

22=CD+13 22=CD+13

2213=CD 22-13=CD

9=CD 9=CD

Respuesta

9

Ejercicio #4

Dado el trapecio ABCD isósceles.

Dado en cm: BC=7  altura del trapecio h=5 perímetro del trapecio P=34

Calcula el área del trapecio

777h=5h=5h=5AAABBBCCCDDDEEE

Solución

Como ABCD es un trapecio, se puede argumentar que:

AD=BC=7 AD=BC=7

La fórmula para hallar el área será

SABCD=(AB+DC)×h2 S_{ABCD}=\frac{(AB+DC)\times h}{2}

Como nos dan el perímetro del trapecio, podemos encontrarAB+DC AB+DC

PABCD=7+AB+7+DC P_{ABCD}=7+AB+7+DC

34=14+AB+DC 34=14+AB+DC

3414=AB+DC 34-14=AB+DC

20=AB+DC 20=AB+DC

Ahora colocaremos el dato que recibimos en la fórmula para calcular el área del trapecio:

S=20×52=1002=50 S=\frac{20\times5}{2}=\frac{100}{2}=50

Respuesta

50

¿Cuántos ejercicios y ejemplos de identificación de trapecios isósceles es necesario realizar?

La cantidad de ejercicios y ejemplos de las distintas propiedades de los trapecios isósceles que debemos practicar, varía de persona en persona.
En general, recomendamos resolver muchas pruebas y observar varios ejemplos para que, en total, estos cubran la mayor cantidad de tipos de ejercicios posibles.
Cuanto más ejercites con trapecios isósceles y sus características clave, comprenderás el tema más profundamente y aumentará la probabilidad de que te vaya bien y que tengas éxito.

Las preguntas más nuevas