Ejemplos, ejercicios y soluciones con el teorema de Pitágoras

¿Quieres aprender la fórmula del teorema de Pitágoras?

¡Lo primordial en el estudio de las matemáticas, como ya lo sabes, es la práctica!
En esta página encontrarás más de 5 ejemplos y ejercicios con soluciones sobre este apasionante teorema para que puedas practicar por tu cuenta y profundizar tus conocimientos.

🏆Ejercicios de teorema de pitágoras

¿Por qué es importante que practiques con la fórmula del teorema de Pitágoras?

Incluso si ya sabemos qué dice el teorema de Pitágoras y estamos seguros de haber entendido el asunto en general, ¡es fundamental que intentes resolver ejercicios por tu cuenta!
Vale la pena experimentar tantos tipos de preguntas como sea posible y analizar la mayor cantidad de ejemplos sobre el teorema de Pitágoras para niños.
Solo practicando y resolviendo un amplio número de preguntas y ejercicios con este apasionante teorema, podrás asimilar a fondo el tema y adquirirás las herramientas necesarias para enfrentar cualquier desafío por tus propios medios.

Preguntas básicas

Ejemplos y ejercicios con soluciones para aplicar y practicar el teorema de los triángulos rectángulos

Ejercicio #1

Dado el triángulo del dibujo. Halla el largo AC

333444AAABBBCCC

Solución

Para resolver el ejercicio, tenemos que utilizar el teorema de Pitágoras:

A²+B²=C²

 

Reemplazamos los datos que tenemos:

3²+4²=C²

9+16=C²

25=C²

5=C

Respuesta

5 cm

Ejercicio #2

Dado el triángulo ABC, halla el largo BC

131313555AAACCCBBB

Solución

Para responder a esta consigna, debemos conocer el Teorema de Pitágoras

El teorema nos permite calcular los lados de un triángulo rectángulo.

Identificamos los lados:

ab = a = 5
bc = b = ?

ac = c = 13

 

Reemplazamos los datos en el ejercicio:

5²+?² = 13²

Intercambiamos las secciones

?²=13²-5²

?²=169-25

?²=144

?=12

Respuesta

12 cm

Ejercicio #3

Dado el triángulo rectángulo:

444333XXX

¿Cuál es el largo del tercer lado?

Solución

Usamos el teorema de Pitágoras

AC2+AB2=BC2 AC^2+AB^2=BC^2

Reemplazamos los datos que conocemos:

32+42=BC2 3^2+4^2=BC^2

9+16=BC2 9+16=BC^2

25=BC2 25=BC^2

Extraemos la raíz:

25=BC \sqrt{25}=BC

5=BC 5=BC

Respuesta

5

Ejercicio #4

Dado el triángulo:

555121212XXX

¿Cuál es el valor de X?

Solución

Es importante recordar: el teorema de Pitágoras es válido solo para triángulos rectángulos.

Este triángulo no tiene un ángulo recto y, por lo tanto, el lado que falta no se puede calcular de esta manera.

Respuesta

No se puede resolver

Ejercicio #5

Dado el triángulo del dibujo. ¿Cuál es el largo AB?

222333AAABBBCCC

Solución

Para hallar el lado AB, necesitaremos usar el teorema de Pitágoras.

El teorema de Pitágoras nos permite hallar el tercer lado de un triángulo rectángulo, si tenemos los otros dos lados.

Puedes leer todo sobre el teorema aquí.

Teorema de Pitágoras:

A2+B2=C2 A^2+B^2=C^2

Es decir, un lado de un cuadrado más el segundo lado de un cuadrado es igual al tercer lado de un cuadrado.

Reemplazamos los datos existentes:

32+22=AB2 3^2+2^2=AB^2

9+4=AB2 9+4=AB^2

13=AB2 13=AB^2

Extraemos la raíz:

13=AB \sqrt{13}=AB

Respuesta

13 \sqrt{13} cm

Ejercicio #6

Dado el triángulo rectángulo:

888XXX171717

¿Cuál es el largo del tercer lado?

Solución

Usamos el teorema de Pitágoras:

AB2+BC2=AC2 AB^2+BC^2=AC^2

Respuesta

15 15

Ejercicio #7

Dados los triángulos del dibujo

¿Cuál es la longitud del lado DB?

666222AAABBBCCCDDD

Solución

En esta pregunta tendremos que usar dos veces el teorema de Pitágoras.

A²+B²=C²

Comencemos por hallar el lado CB:

6²+CB²=(2√11)²

36+CB²=4*11

CB²=44-36

CB²=8

CB=√8

 

Usaremos exactamente la misma manera para hallar el lado DB:

2²+DB²=(√8)²

4+CB²=8

CB²=8-4

CB²=4

CB=√4=2

Respuesta

2 cm

Ejercicio #8

El triángulo del dibujo es rectángulo e isósceles.

Halla la longitud de los catetos del triángulo

AAABBBCCC

Solución

Usamos el teorema de Pitágoras:

AC2+BC2=AB2 AC^2+BC^2=AB^2

Como los triángulos son isósceles, el teorema se puede escribir:

AC2+AC2=AB2 AC^2+AC^2=AB^2

Reemplazamos los datos que conocemos:

2AC2=(82)2=64×2 2AC^2=(8\sqrt{2})^2=64\times2

Reducimos el 2 y extraemos la raíz:

AC=64=8 AC=\sqrt{64}=8

BC=AC=8 BC=AC=8

Respuesta

8 cm

Ejercicio #9

Los egipcios decidieron construir otra pirámide que parece un triángulo isósceles cuando se ve de lado.

Cada lado de la pirámide mide 150 mts, la base mide 120 mts.

¿Cuál es la altura de la pirámide?

150150150120120120150150150

Solución

Como la altura divide a la base en dos partes iguales, a cada una se le llamará X

Ahora calculamos a X:120:2=60 120:2=60

Ahora podemos calcular la altura usando el teorema de Pitágoras:

X2+H2=1502 X^2+H^2=150^2

Colocamos los datos correspondientes:

602+h2=1502 60^2+h^2=150^2

Extraemos la raíz: h=1502602=225003600=18900 h=\sqrt{150^2-60^2}=\sqrt{22500-3600}=\sqrt{18900}

h=3021 h=30\sqrt{21}

Respuesta

3021 30\sqrt{21} metro

Ejercicio #10

Dado el triángulo de la figura

¿Cuál es su perímetro?

777333AAABBBCCC

Solución

Para hallar el perímetro de un triángulo, primero tendremos que encontrar todos sus lados.

Dados dos lados y sólo queda hallar el perímetro.

Podemos utilizar el Teorema de Pitágoras
AB2+BC2=AC2 AB^2+BC^2=AC^2
Reemplazamos todos los datos conocidos:

AC2=72+32 AC^2=7^2+3^2
AC2=49+9=58 AC^2=49+9=58
Extraemos la raíz:

AC=58 AC=\sqrt{58}
Ahora que tenemos todos los lados, podemos sumarlos y así hallar el perímetro:
58+7+3=58+10 \sqrt{58}+7+3=\sqrt{58}+10

Respuesta

10+58 10+\sqrt{58} cm

Ejercicio #11

En el rectángulo ABCD dado:

BD=25,BC=7 BD=25,BC=7

Calcula el área del rectángulo.

AAABBBCCCDDD725

Solución

Para hallar el lado DC usaremos el teorema de Pitágoras:

(BC)2+(DC)2=(DB)2 (BC)^2+(DC)^2=(DB)^2

Ahora reemplazaremos en el teorema los datos existentes:

72+(DC)2=252 7^2+(DC)^2=25^2

49+DC2=625 49+DC^2=625

DC2=62549=576 DC^2=625-49=576

Extraemos la raíz:

DC=576=24 DC=\sqrt{576}=24

Respuesta

24

Ejercicio #12

Dado el rombo del dibujo:

555333

¿Cuál es el área?

Solución

Recuerda que hay dos opciones para calcular el área de un rombo:

Diagonal por diagonal dividido 2.

Lado por la altura del lado.

En la pregunta se nos da solo la mitad de la diagonal y se nos da el lado, lo que significa que no podemos usar ninguna de las fórmulas.

Necesitamos encontrar más datos. Encontremos la segunda diagonal:

Recordemos que las diagonales de un rombo son perpendiculares entre sí, lo que significa que forman un ángulo de 90 grados.

Por lo tanto, todos los triángulos de un rombo son rectángulos.

Ahora podemos centrarnos en el triángulo donde están dados el lado y la altura, y calcularemos el tercer lado por el teorema de Pitágoras:

a2+b2=c2 a²+b²=c² Reemplazamos los datos:

32+x2=52 3^2+x^2=5^2 9+x2=25 9+x^2=25 x2=259=16 x^2=25-9=16 x=16=4 x=\sqrt{16}=4 Ahora que hemos hallado la mitad de la segunda diagonal, podemos calcular el área mediante la diagonal por diagonal:

Dado que las diagonales en un rombo son perpendiculares y se cruzan entre sí, son iguales. Por lo tanto nuestras diagonales son iguales:

3+3=6 3+3=6 4+4=8 4+4=8 Por lo tanto, el área del rombo es:

6×82=482=24 \frac{6\times8}{2}=\frac{48}{2}=24

Respuesta

24

Ejercicio #13

Dado el triángulo de la figura

Dado que el perímetro es 12+45 12+4\sqrt{5} cm

¿Cuál es el largo de hipotenusa?

444AAABBBCCC

Solución

Calculamos el perímetro del triángulo:

12+45=4+AC+BC 12+4\sqrt{5}=4+AC+BC

Como queremos encontrar la hipotenusa, es decir BC, lo aislamos:

12+454AC=BC 12+4\sqrt{5}-4-AC=BC

BC=8+45AC BC=8+4\sqrt{5}-AC

Encuentre AC usando el teorema de Pitágoras:

AB2+AC2=BC2 AB^2+AC^2=BC^2

42+AC2=(8+45AC)2 4^2+AC^2=(8+4\sqrt{5}-AC)^2

16+AC2=(8+45)22×AC(8+45)+AC2 16+AC^2=(8+4\sqrt{5})^2-2\times AC(8+4\sqrt{5})+AC^2

Reduciremos los dosAC2 AC^2

16=82+2×8×45+(45)22×8×AC2AC45 16=8^2+2\times8\times4\sqrt{5}+(4\sqrt{5})^2-2\times8\times AC-2AC4\sqrt{5}

16=64+645+16×516AC85AC 16=64+64\sqrt{5}+16\times5-16AC-8\sqrt{5}AC

16AC+85AC=64+645+16×516 16AC+8\sqrt{5}AC=64+64\sqrt{5}+16\times5-16

AC(16+85)=128+645 AC(16+8\sqrt{5})=128+64\sqrt{5}

AC=128+64516+85=8(16+85)16+85 AC=\frac{128+64\sqrt{5}}{16+8\sqrt{5}}=\frac{8(16+8\sqrt{5})}{16+8\sqrt{5}}

Reducimos y obtenemos

AC=8 AC=8

Ahora podemos reemplazar AC por el valor que encontramos para BC:

BC=8+45AC BC=8+4\sqrt{5}-AC

BC=8+458=45 BC=8+4\sqrt{5}-8=4\sqrt{5}

Respuesta

45 4\sqrt{5} cm

Ejercicio #14

Dado el trapecio DECB rectángulo y parte del triángulo ABC.

Dado en cm AB=6 AC=10

DE intersecta AB y AC respectivamente

Calcula el área del trapecio DECB.

666101010AAABBBCCCDDDEEE


Solución

Dado que DE cruza AB y AC, es decir:

AD=DB=12AB=12×6=3 AD=DB=\frac{1}{2}AB=\frac{1}{2}\times6=3

AE=EC=12AC=12×10=5 AE=EC=\frac{1}{2}AC=\frac{1}{2}\times10=5

Ahora vamos a observar el triángulo ADE, donde ya hemos calculado 2 de sus lados.

Ahora podemos hallar el tercer lado DE usando el teorema de Pitágoras:

AD2+DE2=AE2 AD^2+DE^2=AE^2

Reemplazamos los datos existentes en la fórmula:

32+DE2=52 3^2+DE^2=5^2

9+DE2=25 9+DE^2=25

DE2=259 DE^2=25-9

DE2=16 DE^2=16

Extraemos la raíz:

DE=16=4 DE=\sqrt{16}=4

Ahora observemos el triángulo ABC en el que se nos dan dos de los lados,

Ahora podemos hallar el tercer lado BC usando el teorema de Pitágoras:

AB2+BC2=AC2 AB^2+BC^2=AC^2

Reemplazamos los datos existentes en la fórmula:

62+BC2=102 6^2+BC^2=10^2

36+BC2=100 36+BC^2=100

BC2=10036 BC^2=100-36

BC2=64 BC^2=64

Extraemos la raíz:

BC=64=8 BC=\sqrt{64}=8

Ahora tenemos todos los datos para calcular el área del trapecio DECB mediante la fórmula:

(base + base) multiplicado por la altura dividido 2:

Tengamos en cuenta que la altura en el trapecio es DB

S=(4+8)2×3 S=\frac{(4+8)}{2}\times3

S=12×32=362=18 S=\frac{12\times3}{2}=\frac{36}{2}=18

Respuesta

18

Ejercicio #15

Dado el triángulo del dibujo

Dado que el área ABC es igual a 2X+16 cm².

Halla el valor de X.

333X+5X+5X+5BBBAAACCCDDD

Solución

El área del triángulo ABC es igual a:

AD×BC2=2x+16 \frac{AD\times BC}{2}=2x+16

Como se nos da el área del triángulo, colocaremos los datos que tenemos sobre el lado BC en la fórmula:

AD×(BD+DC)2=2x+16 \frac{AD\times(BD+DC)}{2}=2x+16

AD×(x+5+3)2=2x+16 \frac{AD\times(x+5+3)}{2}=2x+16

AD×(x+8)2=2x+16 \frac{AD\times(x+8)}{2}=2x+16

Multiplicamos por 2 para eliminar el denominador:

AD×(x+8)=4x+32 AD\times(x+8)=4x+32

Dividido por: (x+8) (x+8)

AD=4x+32(x+8) AD=\frac{4x+32}{(x+8)}

Escribimos el numerador de la fracción de otra forma:

AD=4(x+8)(x+8) AD=\frac{4(x+8)}{(x+8)}

Simplificamos a X + 8 y obtendremos:

AD=4 AD=4

Ahora nos enfocamos en el triángulo ADC y por el teorema de Pitágoras hallaremos X:

AD2+DC2=AC2 AD^2+DC^2=AC^2

Reemplazamos los datos existentes:

42+(x+5)2=(65)2 4^2+(x+5)^2=(\sqrt{65})^2

16+(x+5)2 =65/16 16+(x+5)^2\text{ }=65/-16

(x+5)2=49/ (x+5)^2=49/\sqrt{}

x+5=49 x+5=\sqrt{49}

x+5=7 x+5=7

x=75=2 x=7-5=2

Respuesta

2 cm

¿Cuántos ejercicios y ejemplos del teorema de Pitágoras para niños es necesario realizar?

La cantidad de ejercicios y ejemplos con triángulos rectángulos que debemos practicar, varía de persona en persona.
En general, recomendamos resolver muchas pruebas y observar varios ejemplos para que, en total, estos cubran la mayor cantidad de tipos de ejercicios posibles.
Cuanto más ejercites con lo que formula el teorema de Pitágoras, comprenderás el tema más profundamente y aumentará la probabilidad de que te vaya bien y que tengas éxito.

Las preguntas más nuevas