Ejemplos, ejercicios y soluciones de la función cuadrática

¿Quieres aprender sobre uno de los conceptos básicos: la esencia de la función cuadrática?

¡Lo primordial en el estudio de las matemáticas, como ya lo sabes, es la práctica!
En esta página encontrarás más de 5 ejemplos y ejercicios con soluciones sobre los conceptos básicos de la función cuadrática para que puedas practicar por tu cuenta y profundizar tus conocimientos.

🏆Ejercicios de la función y=ax^2+bx+c

¿Por qué es importante que practiques sobre las fundamentales de la función cuadrática?

Incluso si ya estudiamos la definición de la función cuadrática y estamos seguros de haber entendido el asunto en general, ¡es fundamental que intentes resolver ejercicios por tu cuenta!
Vale la pena experimentar tantos tipos de preguntas como sea posible y analizar la mayor cantidad de ejemplos sobre función cuadrática para alumnos.
Solo practicando y resolviendo un amplio número de preguntas y ejercicios con función cuadrática para niños, podrás asimilar a fondo el tema y adquirirás las herramientas necesarias para enfrentar cualquier desafío por tus propios medios.

Preguntas básicas

Ejemplos y ejercicios con soluciones de función cuadrática simplificada para niños

Ejercicio #1

¿Cuál es el valor del coeficiente b b en la ecuación?

3x2+8x5 3x^2+8x-5

Solución

La ecuación cuadrática del problema ya está ordenada (es decir, todos los términos de un lado y 0 del otro lado), por lo que nos acercamos a responder la pregunta formulada:

En el problema se hizo la pregunta: ¿cuál es el valor del coeficienteb b en la ecuación?

Recordemos las definiciones de los coeficientes al resolver una ecuación cuadrática y la fórmula de las raíces:

La regla dice que las raíces de una ecuación de la forma

ax2+bx+c=0 ax^2+bx+c=0 es :

x1,2=b±b24ac2a x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Es decir el coeficienteb b es el coeficiente del término en la primera potencia -x x Examinamos la ecuación del problema:

3x2+8x5=0 3x^2+8x-5 =0 Es decir, el número que multiplica a

x x es

8 8 Y entonces reconocemos a b, que es el coeficiente del término en la primera potencia, es el número8 8 ,

La respuesta correcta es la opción d.

Respuesta

8

Ejercicio #2

y=x2+10x y=x^2+10x

Solución

Aquí tenemos una ecuación cuadrática.

Una ecuación cuadrática siempre se construye así:

 

y=ax2+bx+c y = ax²+bx+c

 

Donde a, b y c generalmente ya los conocemos, y los puntos X e Y necesitan ser descubiertos.

En primer lugar, parece que en esta fórmula no tenemos la C,

Por lo tanto, entendemos que es igual a 0.

c=0 c = 0

 

a es el coeficiente de X², aquí no tiene coeficiente, por lo tanto

a=1 a = 1

 

b=10 b= 10

es el número que viene antes de la X que no está al cuadrado.

 

Respuesta

a=1,b=10,c=0 a=1,b=10,c=0

Ejercicio #3

y=2x25x+6 y=2x^2-5x+6

Solución

De hecho, una ecuación cuadrática se compone así:

y = ax²-bx-c

 

Es decir,

a es el coeficiente de x², en este caso 2.
b es el coeficiente de x, en este caso 5.
Y c es el número sin incógnita al final, en este caso 6.

Respuesta

a=2,b=5,c=6 a=2,b=-5,c=6

Ejercicio #4

¿Cuál es el valor del coeficiente c c en la ecuación?

3x2+5x 3x^2+5x

Solución

La ecuación cuadrática del problema ya está ordenada (es decir, todos los términos de un lado y 0 del otro lado), por lo que nos acercamos a responder la pregunta formulada:

En el problema se hizo la pregunta: ¿cuál es el valor del coeficientec c en la ecuación?

Recordemos las definiciones de los coeficientes al resolver una ecuación cuadrática y la fórmula de las raíces:

La regla dice que las raíces de una ecuación de la forma

ax2+bx+c=0 ax^2+bx+c=0 es:

x1,2=b±b24ac2a x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Es decir el coeficiente
c c es el término libre- es decir, el coeficiente del término elevado a la potencia cero -x0 x^0 (Y esto se debe a que cualquier número distinto de cero elevado a la potencia cero es igual a 1:

x0=1 x^0=1 )

Examinamos la ecuación del problema:

3x2+5x=0 3x^2+5x=0 Tenga en cuenta que no hay ningún término libre en la ecuación, es decir, el valor numérico del término libre es 0, de hecho la ecuación se puede escribir de la siguiente manera:

3x2+5x+0=0 3x^2+5x+0=0 y por lo tanto el valor del coeficientec c es 0.

La respuesta correcta es la opción c.

Respuesta

0

¿Cuántos ejercicios y ejemplos de función cuadrática simplificada para niños es necesario realizar?

La cantidad de ejercicios y ejemplos de función cuadrática para alumnos que debemos practicar, varía de persona en persona.
En general, recomendamos resolver muchas pruebas y observar varios ejemplos para que, en total, estos cubran la mayor cantidad de tipos de ejercicios posibles.
Cuanto más ejercites explorando los conceptos básicos de la función cuadrática, comprenderás el tema más profundamente y aumentará la probabilidad de que te vaya bien y que tengas éxito.

Las preguntas más nuevas