Leyes de los logaritmos - Ejemplos, Ejercicios y Soluciones

Entendiendo la Leyes de los logaritmos

Explicación completa con ejemplos

¿Qué son las leyes logarítmicas?

logaritmos explicacion 2

Hay algunas leyes logarítmicas que vale la pena conocer para facilitar la resolución de problemas. Las siguientes leyes son las reglas principales que utilizará. Cabe señalar que las letras a, m, n deben ser números reales y positivos para que estas leyes tengan validez.

logaritmos formula
leyes logarítmicas

Valores constantes:

  • loga(1)=0 log_a\left(1\right)=0
  • loga(a)=1 log_a\left(a\right)=1

Operaciones aritméticas básicas

  • logaMN=logaM+logaN log_aMN=log_aM+log_aN
  • logaM/N=logaMlogaN log_aM/N=log_aM-log_aN
  • Loga(M)×Logn(D)=Logn(M)×Loga(D) Log_a\left(M\right)\times Log_n\left(D\right)=Log_n\left(M\right)\times Log_a\left(D\right)
  • LogaMn=nLogaM Log_aM^n=nLog_aM

Explicación visual de las reglas de logaritmos que muestra que log(x·y) es igual a log(x) más log(y), y que log(x/y) es igual a log(x) menos log(y), con flechas para mayor claridad.

Cambiar la base del logaritmo:

  • logb(x)=logc(x)/logc(b) log_b\left(x\right)=log_c\left(x\right)/log_c\left(b\right)
  • logb(c)=1/logc(b) log_b\left(c\right)=1/log_c\left(b\right)

Fórmula de cambio de base logarítmica ilustrada: logaritmo base b de a es igual al logaritmo base x de a dividido por el logaritmo base x de b, con flechas que muestran la transformación.

Derivada del logaritmo:

fx=logb(x)fx=1/xln(b) fx=log_b\left(x\right)⇒f^{\prime}x=1/xln(b)

Integral del logaritmo:

logb(x)dx=x×logb(x)1/ln(b)+C ∫log_b\left(x\right)dx=x\times log_b\left(x\right)-1/ln\left(b\right)+C

Explicación completa

Practicar Leyes de los logaritmos

Pon a prueba tus conocimientos con más de 38 cuestionarios

\( \log_49\times\log_{13}7= \)

ejemplos con soluciones para Leyes de los logaritmos

Soluciones paso a paso incluidas
Ejercicio #1

2log82+log83= 2\log_82+\log_83=

Solución Paso a Paso

2log82=log822=log84 2\log_82=\log_82^2=\log_84

2log82+log83=log84+log83= 2\log_82+\log_83=\log_84+\log_83=

log843=log812 \log_84\cdot3=\log_812

Respuesta:

log812 \log_812

Solución en video
Ejercicio #2

3log49+8log413= 3\log_49+8\log_4\frac{1}{3}=

Solución Paso a Paso

En donde:

3log49=log493=log4729 3\log_49=\log_49^3=\log_4729

y

8log413=log4(13)8= 8\log_4\frac{1}{3}=\log_4\left(\frac{1}{3}\right)^8=

log4138=log416561 \log_4\frac{1}{3^8}=\log_4\frac{1}{6561}

Por lo tanto

3log49+8log413= 3\log_49+8\log_4\frac{1}{3}=

log4729+log416561 \log_4729+\log_4\frac{1}{6561}

logax+logay=logaxy \log_ax+\log_ay=\log_axy

(72916561)=log419 \left(729\cdot\frac{1}{6561}\right)=\log_4\frac{1}{9}

log491=log49 \log_49^{-1}=-\log_49

Respuesta:

log49 -\log_49

Solución en video
Ejercicio #3

12log24×log38+log39×log37= \frac{1}{2}\log_24\times\log_38+\log_39\times\log_37=

Solución Paso a Paso

Descomponemos en partes

log24=x \log_24=x

2x=4 2^x=4

x=2 x=2

log39=x \log_39=x

3x=9 3^x=9

x=2 x=2

Reemplazamos en la ecuación

122log38+2log37= \frac{1}{2}\cdot2\log_38+2\log_37=

1log38+2log37= 1\cdot\log_38+2\log_37=

log38+log372= \log_38+\log_37^2=

log38+log349= \log_38+\log_349=

log3(849)=log3392 \log_3\left(8\cdot49\right)=\log_3392 x=2 x=2

Respuesta:

log3392 \log_3392

Solución en video
Ejercicio #4

14log61296log612log63= \frac{1}{4}\cdot\log_61296\cdot\log_6\frac{1}{2}-\log_63=

Solución Paso a Paso

Descomponemos en partes

log61296=x \log_61296=x

6x=1296 6^x=1296

x=4 x=4

144log612log63= \frac{1}{4}\cdot4\cdot\log_6\frac{1}{2}-\log_63=

log612log63= \log_6\frac{1}{2}-\log_63=

log6(12:3)=log616 \log_6\left(\frac{1}{2}:3\right)=\log_6\frac{1}{6}

log616=x \log_6\frac{1}{6}=x

6x=16 6^x=\frac{1}{6}

x=1 x=-1

Respuesta:

1 -1

Solución en video
Ejercicio #5

log7x4log72x2=3 \log_7x^4-\log_72x^2=3

?=x

Solución Paso a Paso

logaxlogay=logaxy \log_ax-\log_ay=\log_a\frac{x}{y}

log7x4log72x2= \log_7x^4-\log_72x^2=

log7x42x2=3 \log_7\frac{x^4}{2x^2}=3

73=x22 7^3=\frac{x^2}{2}

Multiplicamos por: 2 2

273=x2 2\cdot7^3=x^2

Extraemos la raíz

x=680=714 x=\sqrt{680}=7\sqrt{14}

x=680=714 x=-\sqrt{680}=-7\sqrt{14}

Respuesta:

714  , 714 -7\sqrt{14\text{ }}\text{ , }7\sqrt{14}

Solución en video

Practica por Tipo de Pregunta

Más Recursos y Enlaces