Tipos de ángulos - Ejemplos, Ejercicios y Soluciones

Entendiendo la Tipos de ángulos

Explicación completa con ejemplos

¿Qué es un ángulo?

Definición: Los ángulos se crean en la intersección entre dos rectas. Como se ve en la siguiente ilustración

Los ángulos se crean en la intersección entre dos rectas

El ángulo en la ilustración es el denominado AB AB .También podríamos llamarlo ángulo ABC \sphericalangle ABC . Lo importante es que la letra del medio sea la de la intersección de las rectas, que es la abertura entre líneas.

Por ejemplo, en este caso:

También podríamos llamarlo ángulo ABC

El ángulo es BCD \sphericalangle BCD o DCB \sphericalangle DCB . Ambas señalizaciones son adecuadas para el mismo ángulo.

Por lo general marcaremos el ángulo con un arco del siguiente modo:

El ángulo es BCD

El ángulo marcado es ABC ∡ABC . A veces señalaremos los ángulos con letras griegas, por ejemplo:

α α

o

β β

Antes del nombre del ángulo deberemos anotar el símbolo de ángulo, así:

Junto se ve así:

CBA ∡CBA

o

α ∡α

A continuación, profundizaremos acerca del tamaño de los ángulos, de los diferentes tipos de ángulos y de aquellos que se generan cuando una recta pasa entre dos rectas paralelas.

Explicación completa

Practicar Tipos de ángulos

Pon a prueba tus conocimientos con más de 27 cuestionarios

Dados los ángulos entre paralelas:

XXX535353949494

¿Cuál es el valor de X?

ejemplos con soluciones para Tipos de ángulos

Soluciones paso a paso incluidas
Ejercicio #1

Halla la medida del ángulo α \alpha

505050AAABBBCCC50

Solución Paso a Paso

Recuerda que la suma de los ángulos en un triángulo es igual a 180 grados.

Por lo tanto, usaremos la siguiente fórmula:

A+B+C=180 A+B+C=180

Ahora insertemos los datos conocidos:

α+50+50=180 \alpha+50+50=180

α+100=180 \alpha+100=180

Simplificamos la expresión y mantenemos el signo apropiado:

α=180100 \alpha=180-100

α=80 \alpha=80

Respuesta:

80

Solución en video
Ejercicio #2

Dados los tres ángulos:

Ángulo A es igual a 56°
Ángulo B es igual a 89°
Ángulo C es igual a 17°

¿Estos ángulos pueden componer un triángulo?

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

56+89+17=162 56+89+17=162

La suma de los ángulos dados no es igual a 180, por lo que no pueden formar un triángulo.

Respuesta:

No

Solución en video
Ejercicio #3

Dados los tres ángulos:

Ángulo A es igual a 30°
Ángulo B es igual a 60°
Ángulo C es igual a 90°

¿Estos ángulos pueden componer un triángulo?

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

30+60+90=180 30+60+90=180
La suma de los ángulos es igual a 180, por lo que pueden formar un triángulo.

Respuesta:

Si

Solución en video
Ejercicio #4

Dados los tres ángulos:

Ángulo A es igual a 90°
Ángulo B es igual a 115°
Ángulo C es igual a 35°

¿Estos ángulos pueden componer un triángulo?

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

90+115+35=240 90+115+35=240
La suma de los ángulos dados no es igual a 180, por lo que no pueden formar un triángulo.

Respuesta:

No

Solución en video
Ejercicio #5

Dada las medidas de los ángulos: 60,50,70

¿Es posible que estas sean las medidas de los ángulos en cualquier triángulo?

Solución Paso a Paso

Recuerda que la suma de los ángulos en un triángulo es igual a 180 grados.

Sumemos los tres ángulos para ver si su suma es igual a 180:

60+50+70=180 60+50+70=180

Por lo tanto, es posible que estos sean los valores de los ángulos en algún triángulo.

Respuesta:

Posible

Solución en video

Continúa tu viaje matemático

Practica por Tipo de Pregunta