Ejemplos, ejercicios y soluciones de la suma de los ángulos de un polígono

¿Quieres aprender como calcular los ángulos de un polígono?

¡Lo primordial en el estudio de las matemáticas, como ya lo sabes, es la práctica!
En esta página encontrarás más de 5 ejemplos y ejercicios con soluciones sobre la suma de los ángulos de un polígono para que puedas practicar por tu cuenta y profundizar tus conocimientos.

🏆Ejercicios de suma y diferencia de angulos

¿Por qué es importante que practiques sobre los ángulos de los polígonos?

Incluso si ya estudiamos calcular los ángulos de un polígono y estamos seguros de haber entendido el asunto en general, ¡es importante que intentes resolver ejercicios por tu cuenta!
Vale la pena experimentar tantos tipos de preguntas como sea posible y analizar la mayor cantidad de ejemplos sobre diferentes polígonos.
Solo practicando y resolviendo un amplio número de preguntas y ejercicios con calculando ángulos de diferentes polígonos, podrás asimilar a fondo el tema y adquirirás las herramientas necesarias para enfrentar cualquier desafío por tus propios medios.

Preguntas básicas

Ejemplos y ejercicios con soluciones de la suma de los ángulos de un polígono

Ejercicio #1

Dados los tres ángulos:

Ángulo A es igual a 56°
Ángulo B es igual a 89°
Ángulo C es igual a 17°

¿Estos ángulos pueden componer un triángulo?

Solución

Sumamos los tres ángulos para ver si son iguales a 180 grados:

56+89+17=162 56+89+17=162

La suma de los ángulos dados no es igual a 180, por lo que no pueden formar un triángulo.

Respuesta

No

Ejercicio #2

Dados los tres ángulos:

Ángulo A es igual a 30°
Ángulo B es igual a 60°
Ángulo C es igual a 90°

¿Estos ángulos pueden componer un triángulo?

Solución

Sumamos los tres ángulos para ver si son iguales a 180 grados:

30+60+90=180 30+60+90=180
La suma de los ángulos es igual a 180, por lo que pueden formar un triángulo.

Respuesta

Si

Ejercicio #3

Dados los tres ángulos:

Ángulo A es igual a 90°
Ángulo B es igual a 115°
Ángulo C es igual a 35°

¿Estos ángulos pueden componer un triángulo?

Solución

Sumamos los tres ángulos para ver si son iguales a 180 grados:

90+115+35=240 90+115+35=240
La suma de los ángulos dados no es igual a 180, por lo que no pueden formar un triángulo.

Respuesta

No

Ejercicio #4

En un triángulo rectángulo, ¿la suma de los dos ángulos no rectos es ?

Solución

En un triángulo rectángulo hay un ángulo igual a 90 grados, los otros dos ángulos suman 90 grados (180° es la suma de los ángulos en un triángulo)

Por lo tanto, la suma de los dos ángulos no rectos es 90 grados.

90+90=180 90+90=180

Respuesta

90 grados

Ejercicio #5

Dado que el triángulo ADE es semejante al triángulo ABC

El triángulo ABC es isósceles

El ángulo A es igual a 50 grados

Halle el ángulo D

AAABBBCCCDDDEEE

Solución

El triángulo ABC es isósceles, por lo tanto el ángulo B es igual al ángulo C. Podemos calcularlos ya que la suma de los ángulos del triángulo es 180:

18050=130 180-50=130

130:2=65 130:2=65

Como los triángulos son semejantes, DE es paralela a BC

Los ángulos B y D son correspondientes y, por lo tanto, son iguales.

B=D=65

Respuesta

65 65

Ejercicio #6

Dado el triángulo equilátero, halla X

8X8X8XAAABBBCCC

Solución

Dado que es un triángulo equilátero, todos los ángulos también son iguales.

Como la suma de los ángulos en un triángulo es 180 grados, cada ángulo es igual a 60 grados. (180:3=60)

De ello se deduce que:60=8x 60=8x

Dividimos ambos lados por 8:

608=8x8 \frac{60}{8}=\frac{8x}{8}

7.5=x 7.5=x

Respuesta

7.5

Ejercicio #7

¿Puede un triángulo tener más de un ángulo obtuso?

Solución

Si tratamos de trazar dos ángulos obtusos y conectarlos para formar un triángulo (es decir, solo 3 lados) parece que esto no es posible.

La respuesta es no.

Respuesta

No

Ejercicio #8

¿Qué triángulo se da en el dibujo?

535353117117117212121AAABBBCCC

Solución

Calculamos la suma de los ángulos del triángulo:

117+53+21=191 117+53+21=191

Parece que la suma de los ángulos del triángulo no es igual a 180°,

Por lo tanto, el triángulo no es estándar y el dibujo es incorrecto.

Respuesta

El triángulo no es correcto

Ejercicio #9

Dado el triángulo ABC isósceles.

AB=BC

Calcula el ángulo ABC y escribe su tipo.

45°45°45°AAABBBCCC

Solución

Dado que es un triángulo isósceles:AB=BC AB=BC

Es posible argumentar que:BAC=ACB=45 BAC=ACB=45

Como la suma de los ángulos de un triángulo es 180, el ángulo ABC será igual a:

1804545=90 180-45-45=90

Como el ángulo ABC mide 90 grados, es un triángulo rectángulo.

Respuesta

90° ángulo recto

Ejercicio #10

ABC es un triángulo isósceles.

A=4x ∢A=4x

B=2x ∢B=2x

Calcula el valor de x.

AAABBBCCC4x2x

Solución

Como sabemos que el triángulo ABC es isósceles.

B=C=2X B=C=2X

Se sabe que en un triángulo la suma de los ángulos es 180.

Por lo tanto podemos calcular de la siguiente manera:

2X+2X+4X=180 2X+2X+4X=180

4X+4X=180 4X+4X=180

8X=180 8X=180

Dividimos las dos secciones por 8:

8X8=1808 \frac{8X}{8}=\frac{180}{8}

X=22.5 X=22.5

Respuesta

22.5

Ejercicio #11

ABCD cuadrilátero.

A=80 ∢A=80

C=95 ∢C=95

D=45 ∢D=45

Calcule el tamaño B ∢B

AAABBBDDDCCC809545

Solución

Sabemos que la suma de los ángulos de un cuadrilátero es 360°, es decir:

A+B+C+D=360 A+B+C+D=360

Reemplazamos los datos sabidos con la siguiente fórmula:

80+B+95+45=360 80+B+95+45=360

B+220=360 B+220=360

Movemos las secciones y mantenemos el signo adecuado:

B=360220 B=360-220

B=140 B=140

Respuesta

140°

Ejercicio #12

Dados los ángulos entre paralelas:

XXX535353949494

¿Cuál es el valor de X?

Solución

En el primer paso tendremos que hallar el ángulo adyacente del ángulo 94.

Recordemos que los ángulos adyacentes son iguales a 180, por lo tanto:

18094=86 180-94=86
Luego observemos el triángulo.

Recordemos que la suma de los ángulos en un triángulo es 180, por lo tanto:

180=x+53+86 180=x+53+86

180=x+139 180=x+139

180139=x 180-139=x

x=41 x=41

Respuesta

41°

Ejercicio #13

ABCD cuadrilátero.

De acuerdo con los datos, calcula el tamaño B ∢B

AAABBBDDDCCC80140

Solución

Como sabemos, la suma de los ángulos de un cuadrado es igual a 360 grados, por lo tanto:

360=A+B+C+D 360=A+B+C+D

Reemplazamos los datos que tenemos en la fórmula anterior:

360=140+B+80+90 360=140+B+80+90

360=310+B 360=310+B

Mueva las secciones y utilice el signo adecuado:

360310=B 360-310=B

50=B 50=B

Respuesta

50

Ejercicio #14

ABCD cuadrilátero.

(AB||CD

AC||BD)

De acuerdo con los datos, halla el ángulo A ∢A

90°90°90°AAABBBDDDCCC45°45°

Solución

Ángulos ABC y DCB son ángulos alternos e iguales a 45

Ángulos ACB y DBC son ángulos alternos e iguales a 45

Es decir, los ángulos B y C iguales a 90 grados.

Ahora podemos calcular el ángulo A, puesto que sabemos que la suma de los ángulos de un cuadrado es 360:

360909090=90 360-90-90-90=90

Respuesta

90°

Ejercicio #15

Dados los ángulos entre rectas paralelas como dibujo

110110110105105105XXX

¿Cuál es el valor de X?

Solución

Como las rectas son paralelas, trazaremos otra línea imaginaria paralela que cruce el ángulo de 110.

El ángulo adyacente al ángulo 105 es igual a 75 (un ángulo plano es igual a 180 grados) Este ángulo es alterno con el ángulo que se dividió usando la línea imaginaria, por lo tanto también es igual a 75.

Se nos da que todo el ángulo es igual a 110 y encontramos solo una parte de el, indicaremos la segunda parte del ángulo como X ya que cambia y es igual al ángulo X existente.

Ahora podemos decir que:

75+x=100 75+x=100

x=11075=35 x=110-75=35

Respuesta

35°

¿Cuántos ejercicios y ejemplos de la suma de los ángulos de un polígono es necesario realizar?

La cantidad de ejercicios y ejemplos con ángulos de los polígonos que debemos practicar, varía de persona en persona.
En general, recomendamos resolver muchas pruebas y observar varios ejemplos para que, en total, estos cubran la mayor cantidad de tipos de ejercicios posibles.
Cuanto más ejercites con ángulos de los polígonos, comprenderás el tema más profundamente y aumentará la probabilidad de que te vaya bien y que tengas éxito.

Las preguntas más nuevas