Suma de los ángulos internos de un triángulo - Ejemplos, Ejercicios y Soluciones

Entendiendo la Suma de los ángulos internos de un triángulo

Explicación completa con ejemplos

La suma de los ángulos internos de un triángulo es 180º 180º grados, es decir, si sumamos los tres ángulos de cualquier triángulo que elijamos, el resultado siempre será 180º 180º grados. Esto quiere decir que, si sabemos la medida de dos ángulos de un triángulo siempre podremos calcular, con facilidad, la medida del tercero: primero sumaremos los dos ángulos que conocemos y luego le restamos a 180º 180º el resultado de la suma de los dos ángulos. El resultado de esta resta nos dará la medida del tercer ángulo del triángulo.  

Por ejemplo, dado un triángulo con dos ángulos interiores conocidos de 45º 45º y 60º 60º grados, se nos pide descubrir la medida del tercer ángulo. Primero sumaremos 45º 45º más 60º 60º teniendo como resultado 105º 105º grados. Ahora restamos 105º 105º de 180º 180º , obteniendo como resultado 75º 75º grados. En otras palabras, el tercer ángulo del triángulo equivale a 75º 75º grados. 

La propiedad anterior también la podemos encontrar con el nombre de teorema de los ángulos interiores de un triángulo y nos puede ayudar a resolver problemas que involucren a los ángulos interiores de un triángulo sin importar si es equilátero, isósceles o escaleno.

Ejemplos de los diferentes tipos de triángulos y la suma de los ángulos internos en cada uno

Explicación completa

Practicar Suma de los ángulos internos de un triángulo

Pon a prueba tus conocimientos con más de 63 cuestionarios

Halla la medida del ángulo \( \alpha \)

505050AAABBBCCC50

ejemplos con soluciones para Suma de los ángulos internos de un triángulo

Soluciones paso a paso incluidas
Ejercicio #1

El triángulo ABC isósceles.

Dada: AD mediana.

¿Cuál es el tamaño del ángulo? ADC ∢\text{ADC} ?

AAABBBCCCDDD

Solución Paso a Paso

En un triángulo isósceles, la mediana a la base es también la altura a la base.

Es decir, el lado AD forma un ángulo de 90° con el lado BC.

Es decir, se nos crean dos triángulos rectángulos.

Por lo tanto, el ángulo ADC es igual a 90 grados.

Respuesta:

90

Solución en video
Ejercicio #2

Dado el triángulo siguiente:

Anote cuál es la altura del triángulo ABC.

AAABBBCCCEEEDDD

Solución Paso a Paso

Una altura en un triángulo es el segmento que une el vértice y el lado opuesto, de tal manera que el segmento forma un ángulo de 90 grados con el lado.

Si observamos el dibujo, podemos notar que el teorema anterior es cierto para la recta AE que cruza BC y forma un ángulo de 90 grados, sale del vértice A y por lo tanto es la altura del triángulo.

Respuesta:

AE

Solución en video
Ejercicio #3

¿Cuál de las siguientes es la altura en el triángulo ABC?

AAABBBCCCDDD

Solución Paso a Paso

Recordemos la definición de altura:

Una altura es una línea recta que desciende del vértice de un triángulo y forma un ángulo de 90 grados con el lado opuesto.

Por lo tanto, el que forma un ángulo de 90 grados es el lado AB con el lado BC

Respuesta:

AB

Solución en video
Ejercicio #4

Dados los dos triángulos, ¿ EC es un lado en uno de los triángulos?

AAABBBCCCDDDEEEFFF

Solución Paso a Paso

Cada triángulo tiene 3 lados, repasaremos el triángulo del lado izquierdo:

Sus lados son: AB,BC,CA

Es decir, en este triángulo el lado EC no existe.

Repasemos el triángulo de la derecha:

Sus lados son: ED,EF,FD

Es decir, en este triángulo el lado EC no existe.

Por lo tanto, EC no es un lado en ninguno de los triángulos.

Respuesta:

No

Solución en video
Ejercicio #5

Dados los tres ángulos:

Ángulo A es igual a 56°
Ángulo B es igual a 89°
Ángulo C es igual a 17°

¿Estos ángulos pueden componer un triángulo?

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

56+89+17=162 56+89+17=162

La suma de los ángulos dados no es igual a 180, por lo que no pueden formar un triángulo.

Respuesta:

No

Solución en video

Continúa tu viaje matemático

Practica por Tipo de Pregunta