Suma de los ángulos internos de un triángulo - Ejemplos, Ejercicios y Soluciones

La suma de los ángulos internos de un triángulo es 180º 180º grados, es decir, si sumamos los tres ángulos de cualquier triángulo que elijamos, el resultado siempre será 180º 180º grados. Esto quiere decir que, si sabemos la medida de dos ángulos de un triángulo siempre podremos calcular, con facilidad, la medida del tercero: primero sumaremos los dos ángulos que conocemos y luego le restamos a 180º 180º el resultado de la suma de los dos ángulos. El resultado de esta resta nos dará la medida del tercer ángulo del triángulo.  

Por ejemplo, dado un triángulo con dos ángulos interiores conocidos de 45º 45º y 60º 60º grados, se nos pide descubrir la medida del tercer ángulo. Primero sumaremos 45º 45º más 60º 60º teniendo como resultado 105º 105º grados. Ahora restamos 105º 105º de 180º 180º , obteniendo como resultado 75º 75º grados. En otras palabras, el tercer ángulo del triángulo equivale a 75º 75º grados. 

La propiedad anterior también la podemos encontrar con el nombre de teorema de los ángulos interiores de un triángulo y nos puede ayudar a resolver problemas que involucren a los ángulos interiores de un triángulo sin importar si es equilátero, isósceles o escaleno.

Ejemplos de los diferentes tipos de triángulos y la suma de los ángulos internos en cada uno

Practicar Suma de los ángulos internos de un triángulo

Ejercicio #1

Dados los tres ángulos:

Ángulo A es igual a 56°
Ángulo B es igual a 89°
Ángulo C es igual a 17°

¿Estos ángulos pueden componer un triángulo?

Solución en video

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

56+89+17=162 56+89+17=162

La suma de los ángulos dados no es igual a 180, por lo que no pueden formar un triángulo.

Respuesta

No

Ejercicio #2

Dados los tres ángulos:

Ángulo A es igual a 30°
Ángulo B es igual a 60°
Ángulo C es igual a 90°

¿Estos ángulos pueden componer un triángulo?

Solución en video

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

30+60+90=180 30+60+90=180
La suma de los ángulos es igual a 180, por lo que pueden formar un triángulo.

Respuesta

Si

Ejercicio #3

Dados los tres ángulos:

Ángulo A es igual a 90°
Ángulo B es igual a 115°
Ángulo C es igual a 35°

¿Estos ángulos pueden componer un triángulo?

Solución en video

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

90+115+35=240 90+115+35=240
La suma de los ángulos dados no es igual a 180, por lo que no pueden formar un triángulo.

Respuesta

No

Ejercicio #4

El triángulo ABC isósceles.

Dada: AD mediana.

¿Cuál es el tamaño del ángulo? ADC ∢\text{ADC} ?

AAABBBCCCDDD

Solución en video

Solución Paso a Paso

En un triángulo isósceles, la mediana a la base es también la altura a la base.

Es decir, el lado AD forma un ángulo de 90° con el lado BC.

Es decir, se nos crean dos triángulos rectángulos.

Por lo tanto, el ángulo ADC es igual a 90 grados.

Respuesta

90

Ejercicio #5

Dado el triángulo siguiente:

Anote cuál es la altura del triángulo ABC.

AAABBBCCCEEEDDD

Solución en video

Solución Paso a Paso

Una altura en un triángulo es el segmento que une el vértice y el lado opuesto, de tal manera que el segmento forma un ángulo de 90 grados con el lado.

Si observamos el dibujo, podemos notar que el teorema anterior es cierto para la recta AE que cruza BC y forma un ángulo de 90 grados, sale del vértice A y por lo tanto es la altura del triángulo.

Respuesta

AE

Ejercicio #1

¿Cuál de las siguientes es la altura en el triángulo ABC?

AAABBBCCCDDD

Solución en video

Solución Paso a Paso

Recordemos la definición de altura:

Una altura es una línea recta que desciende del vértice de un triángulo y forma un ángulo de 90 grados con el lado opuesto.

Por lo tanto, el que forma un ángulo de 90 grados es el lado AB con el lado BC

Respuesta

AB

Ejercicio #2

En un triángulo rectángulo, ¿la suma de los dos ángulos no rectos es ?

Solución en video

Solución Paso a Paso

En un triángulo rectángulo hay un ángulo igual a 90 grados, los otros dos ángulos suman 90 grados (180° es la suma de los ángulos en un triángulo)

Por lo tanto, la suma de los dos ángulos no rectos es 90 grados.

90+90=180 90+90=180

Respuesta

90 grados

Ejercicio #3

Dados los dos triángulos, ¿ EC es un lado en uno de los triángulos?

AAABBBCCCDDDEEEFFF

Solución en video

Solución Paso a Paso

Cada triángulo tiene 3 lados, repasaremos el triángulo del lado izquierdo:

Sus lados son: AB,BC,CA

Es decir, en este triángulo el lado EC no existe.

Repasemos el triángulo de la derecha:

Sus lados son: ED,EF,FD

Es decir, en este triángulo el lado EC no existe.

Por lo tanto, EC no es un lado en ninguno de los triángulos.

Respuesta

No

Ejercicio #4

Dado que el triángulo ADE es semejante al triángulo ABC

El triángulo ABC es isósceles

El ángulo A es igual a 50 grados

Halle el ángulo D

AAABBBCCCDDDEEE

Solución en video

Solución Paso a Paso

El triángulo ABC es isósceles, por lo tanto el ángulo B es igual al ángulo C. Podemos calcularlos ya que la suma de los ángulos del triángulo es 180:

18050=130 180-50=130

130:2=65 130:2=65

Como los triángulos son semejantes, DE es paralela a BC

Los ángulos B y D son correspondientes y, por lo tanto, son iguales.

B=D=65

Respuesta

65 65

Ejercicio #5

Dado el triángulo equilátero, halla X

8X8X8XAAABBBCCC

Solución en video

Solución Paso a Paso

Dado que es un triángulo equilátero, todos los ángulos también son iguales.

Como la suma de los ángulos en un triángulo es 180 grados, cada ángulo es igual a 60 grados. (180:3=60)

De ello se deduce que:60=8x 60=8x

Dividimos ambos lados por 8:

608=8x8 \frac{60}{8}=\frac{8x}{8}

7.5=x 7.5=x

Respuesta

7.5

Ejercicio #1

¿Puede un triángulo tener más de un ángulo obtuso?

Solución en video

Solución Paso a Paso

Si tratamos de trazar dos ángulos obtusos y conectarlos para formar un triángulo (es decir, solo 3 lados) parece que esto no es posible.

La respuesta es no.

Respuesta

No

Ejercicio #2

¿Qué triángulo se da en el dibujo?

535353117117117212121AAABBBCCC

Solución en video

Solución Paso a Paso

Calculamos la suma de los ángulos del triángulo:

117+53+21=191 117+53+21=191

Parece que la suma de los ángulos del triángulo no es igual a 180°,

Por lo tanto, el triángulo no es estándar y el dibujo es incorrecto.

Respuesta

El triángulo no es correcto

Ejercicio #3

Determinar si la afirmación es verdadera o falsa.

α+β=180 \alpha+\beta=180

αβ

Solución en video

Solución Paso a Paso

Dado que los ángulos alfa y beta están en la misma línea recta y dado que son ángulos adyacentes. Juntos son iguales a 180 grados y la afirmación es verdadera.

Respuesta

Verdadero

Ejercicio #4

Dado el triángulo ABC isósceles.

AB=BC

Calcula el ángulo ABC y escribe su tipo.

45°45°45°AAABBBCCC

Solución en video

Solución Paso a Paso

Dado que es un triángulo isósceles:AB=BC AB=BC

Es posible argumentar que:BAC=ACB=45 BAC=ACB=45

Como la suma de los ángulos de un triángulo es 180, el ángulo ABC será igual a:

1804545=90 180-45-45=90

Como el ángulo ABC mide 90 grados, es un triángulo rectángulo.

Respuesta

90° ángulo recto

Ejercicio #5

ABC es un triángulo isósceles.

A=4x ∢A=4x

B=2x ∢B=2x

Calcula el valor de x.

AAABBBCCC4x2x

Solución en video

Solución Paso a Paso

Como sabemos que el triángulo ABC es isósceles.

B=C=2X B=C=2X

Se sabe que en un triángulo la suma de los ángulos es 180.

Por lo tanto podemos calcular de la siguiente manera:

2X+2X+4X=180 2X+2X+4X=180

4X+4X=180 4X+4X=180

8X=180 8X=180

Dividimos las dos secciones por 8:

8X8=1808 \frac{8X}{8}=\frac{180}{8}

X=22.5 X=22.5

Respuesta

22.5

Temas que se aprenden en secciones posteriores

  1. Altura del triángulo
  2. Los lados o aristas de un triángulo
  3. Ángulo exterior de un triángulo
  4. Área
  5. Triángulo
  6. Tipos de triángulos
  7. Triángulo obtuso
  8. Triángulo equilátero
  9. Identificación de un triángulo isósceles
  10. Triángulo escaleno
  11. Triángulo agudo
  12. Triángulo isósceles
  13. Área de un triángulo
  14. Área de un triángulo rectángulo
  15. Área del triángulo isósceles
  16. Área del triángulo escaleno
  17. Área del triángulo equilátero
  18. Perímetro
  19. Perímetro de un triángulo