Potencia de fracción - Ejemplos, Ejercicios y Soluciones

Potencia de un cociente

Cuando nos topemos con una expresión con cociente (o división) dentro de un paréntesis y toda la expresión este elevada a cierto exponente, podremos tomar el exponente y aplicarlo a cada uno de los términos de la expresión.
No nos olvidemos de mantener la raya fraccionaria entre los términos.
Fórmula de la propiedad:
(ab)n=anbn(\frac {a}{b})^n=\frac {a^n}{b^n}
Esta propiedad también es concerniente a expresiones algebraicas.

Temas sugeridos para practicar con anticipación

  1. Multiplicación de potencias de igual base
  2. División de potencias de igual base
  3. Potencia de una multiplicación

Practicar Potencia de fracción

ejemplos con soluciones para potencia de fracción

Ejercicio #1

(26)3= (\frac{2}{6})^3=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula:

(ab)n=anbn (\frac{a}{b})^n=\frac{a^n}{b^n}

(26)3=(22×3)3 (\frac{2}{6})^3=(\frac{2}{2\times3})^3

Simplificamos:

(13)3=1333 (\frac{1}{3})^3=\frac{1^3}{3^3}

1×1×13×3×3=127 \frac{1\times1\times1}{3\times3\times3}=\frac{1}{27}

Respuesta

127 \frac{1}{27}

Ejercicio #2

(4274)2= (\frac{4^2}{7^4})^2=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula:

(ab)n=anbn (\frac{a}{b})^n=\frac{a^n}{b^n}

(4274)2=(42)2(74)2 (\frac{4^2}{7^4})^2=\frac{(4^2)^2}{(7^4)^2}

Ahora utilizamos la fórmula para multiplicar potencias:

(an)m=an×m (a^n)^m=a^{n\times m}

42×274×2=4478 \frac{4^{2\times2}}{7^{4\times2}}=\frac{4^4}{7^8}

Respuesta

4478 \frac{4^4}{7^8}

Ejercicio #3

454614=? 4^5-4^6\cdot\frac{1}{4}=\text{?}

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación para un exponente negativo, pero en dirección opuesta:

1an=an \frac{1}{a^n} =a^{-n} Aplicamos esta propiedad al problema:

454614=454641 4^5-4^6\cdot\frac{1}{4}= 4^5-4^6\cdot4^{-1} Cuando aplicamos la propiedad anterior para el segundo término desde la izquierda en la cantidad del problema y convertimos la fracción a un término con un exponente negativo,

Posteriormente usamos la propiedad de potenciación para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Aplicamos esta propiedad en la expresión que obtuvimos en el último paso:

454641=4546+(1)=45461=4545=0 4^5-4^6\cdot4^{-1} =4^5-4^{6+(-1)}=4^5-4^{6-1}=4^5-4^{5}=0 Cuando aplicamos la propiedad de potenciación antes mencionada al segundo término desde la izquierda en la cantidad en la expresión que obtuvimos en el último paso, luego simplificamos la expresión resultante,

Resumimos los pasos de resolución:

454614=454641=4545=0 4^5-4^6\cdot\frac{1}{4}= 4^5-4^6\cdot4^{-1} =4^5-4^{5}=0

Obtuvimos que la respuesta es 0.

Por lo tanto, la respuesta correcta es la opción A.

Respuesta

0

Ejercicio #4

(23)4=? (\frac{2}{3})^{-4}=\text{?}

Solución en video

Solución Paso a Paso

Usamos la fórmula:

(ab)n=(ba)n (\frac{a}{b})^{-n}=(\frac{b}{a})^n

Por lo tanto, obtenemos:

(32)4 (\frac{3}{2})^4

Usamos la fórmula:

(ba)n=bnan (\frac{b}{a})^n=\frac{b^n}{a^n}

Por lo tanto, obtenemos:

3424=3×3×3×32×2×2×2=8116 \frac{3^4}{2^4}=\frac{3\times3\times3\times3}{2\times2\times2\times2}=\frac{81}{16}

Respuesta

8116 \frac{81}{16}

Ejercicio #5

54(15)4=? 5^4\cdot(\frac{1}{5})^4=\text{?}

Solución en video

Solución Paso a Paso

Este problema se puede resolver utilizando las propiedades de potencias para una potencia negativa, potencia sobre una potencia y la propiedad de potencias para el producto entre términos con bases idénticas, que es la forma natural de la solución,

Pero aquí preferimos resolver de otra manera que es un poco más rápido:

A tal efecto, la ley de potencia por potencia se aplica a los paréntesis en los que se multiplican los términos, pero en sentido contrario:

xnyn=(xy)n x^n\cdot y^n=(x\cdot y)^n Dado que en la expresión en el problema existe una multiplicación entre dos términos con potencias idénticas, se puede utilizar esta ley en su sentido contrario, por lo que aplicaremos esta propiedad al problema:

54(15)4=(515)4 5^4\cdot(\frac{1}{5})^4=\big(5\cdot\frac{1}{5}\big)^4 Dado que la multiplicación en el problema dado es entre términos con la misma potencia, podríamos aplicar esta ley en la dirección opuesta y escribir la expresión como la multiplicación de las bases de los términos entre paréntesis a los que se aplica la misma potencia.

Continuaremos y simplificaremos la expresión entre paréntesis, lo haremos rápidamente si notamos que entre paréntesis hay una multiplicación entre dos números opuestos, entonces su producto dará el resultado: 1, aplicaremos este entendimiento a la expresión que llegamos en el último paso:

(515)4=14=1 \big(5\cdot\frac{1}{5}\big)^4 = 1^4=1 Cuando en el primer paso aplicamos el entendimiento anterior, y luego usamos el hecho de que elevar el número 1 a cualquier potencia siempre dará el resultado: 1, lo que significa que:

1x=1 1^x=1 Resumiendo los pasos para resolver el problema, obtenemos que:

54(15)4=(515)4=1 5^4\cdot(\frac{1}{5})^4=\big(5\cdot\frac{1}{5}\big)^4 =1 Por lo tanto, la respuesta correcta es la opción b.

Respuesta

1

ejemplos con soluciones para potencia de fracción

Ejercicio #1

3004(1300)4=? 300^{-4}\cdot(\frac{1}{300})^{-4}=?

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación para un exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} Aplicamos esta propiedad en el problema:

3004(1300)4=3004(3001)4 300^{-4}\cdot(\frac{1}{300})^{-4}= 300^{-4}\cdot(300^{-1})^{-4} Cuando aplicamos la mencionada propiedad de potenciación en el segundo término de la multiplicación, entendiendo que:

3001=1300 300^{-1}=\frac{1}{300} A continuación, recordamos la propiedad de potenciación para un exponente elevado a otro exponente:

(am)n=amn (a^m)^n=a^{m\cdot n} Aplicamos esta propiedad en la expresión que obtuvimos en el último paso:

3004(3001)4=3004300(1)(4)=30043004 300^{-4}\cdot(300^{-1})^{-4} =300^{-4}\cdot300^{(-1)\cdot(-4)}=300^{-4}\cdot300^{4} Cuando en una primera etapa aplicamos la propiedad de potenciación mencionada y luego simplificamos la expresión resultante,

Resumiendo la resolución al problema hasta aquí, obtuvimos que:

3004(1300)4=3004(3001)4=30043004 300^{-4}\cdot(\frac{1}{300})^{-4}= 300^{-4}\cdot(300^{-1})^{-4} =300^{-4}\cdot300^{4} Continuamos y recordamos la propiedad de potenciación para la multiplicación entre términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Aplicamos esta propiedad en la expresión que obtuvimos en el último paso:

30043004=3004+4=3000 300^{-4}\cdot300^{4} =300^{-4+4}=300^0 Posteriormente recordamos que elevar cualquier número a la potencia de cero (excepto el número 0) dará como resultado 1, es decir que:

X0=1 X^0=1 Aplicamos esta propiedad en la expresión que obtuvimos en el último paso:

3000=1 300^0 =1 Resumiendo los pasos de resolución, obtenemos que:

3004(1300)4=30043004=3000=1 300^{-4}\cdot(\frac{1}{300})^{-4}= 300^{-4}\cdot300^{4} =300^0=1 Por lo tanto, la respuesta correcta es la opción A.

Respuesta

1

Ejercicio #2

7483(17)4=? 7^4\cdot8^3\cdot(\frac{1}{7})^4=\text{?}

Solución en video

Solución Paso a Paso

Usamos la fórmula:

(ab)n=anbn (\frac{a}{b})^n=\frac{a^n}{b^n}

Descomponemos la fracción entre paréntesis:

(17)4=1474 (\frac{1}{7})^4=\frac{1^4}{7^4}

Obtenemos:

74×83×1474 7^4\times8^3\times\frac{1^4}{7^4}

Simplificamos las potencias: 74 7^4

Obtenemos:

83×14 8^3\times1^4

Recordemos que el número 1 en cualquier potencia es igual a 1, por lo que obtenemos:

83×1=83 8^3\times1=8^3

Respuesta

83 8^3

Ejercicio #3

24(12)821023=? \frac{2^{-4}\cdot(\frac{1}{2})^8\cdot2^{10}}{2^3}=\text{?}

Solución en video

Solución Paso a Paso

Primero usamos dos propiedades de potenciación:

a. Propiedad de potenciación de un exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} b. Propiedad de potenciación de un exponente elevado a otro exponente:

(am)n=amn (a^m)^n=a^{m\cdot n} Nos ocupamos del término medio en la multiplicación del numerador de la fracción del problema:

24(12)821023=24(21)821023=2421821023=242821023 \frac{2^{-4}\cdot(\frac{1}{2})^8\cdot2^{10}}{2^3}=\frac{2^{-4}\cdot(2^{-1})^8\cdot2^{10}}{2^3}=\frac{2^{-4}\cdot2^{-1\cdot8}\cdot2^{10}}{2^3}=\frac{2^{-4}\cdot2^{-8}\cdot2^{10}}{2^3} Mientras, en la primera etapa aplicamos la propiedad de potenciación negativa especificada en A al término dentro de los paréntesis del término medio en el numerador de la fracción, en la segunda etapa aplicamos la propiedad de potenciación especificada en B a este término, posteriormente simplificamos la expresión en el exponente,

Continuamos y recordamos la propiedad de potenciación para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Aplicamos esta propiedad en el numerador de la fracción que obtuvimos en el último paso:

242821023=24+(8)+1023=248+1023=2223 \frac{2^{-4}\cdot2^{-8}\cdot2^{10}}{2^3}=\frac{2^{-4+(-8)+10}}{2^3}=\frac{2^{-4-8+10}}{2^3}=\frac{2^{-2}}{2^3} Recordemos ahora la propiedad de potenciación para dividir términos de bases idénticas:

aman=amn \frac{a^m}{a^n}=a^{m-n} Aplicamos esta propiedad en la expresión que obtuvimos en el último paso:

2223=223=25 \frac{2^{-2}}{2^3}=2^{-2-3}=2^{-5} Resumimos los pasos de resolución hasta aquí, obteniendo que:

24(12)821023=242821023=2223=25 \frac{2^{-4}\cdot(\frac{1}{2})^8\cdot2^{10}}{2^3}=\frac{2^{-4}\cdot2^{-8}\cdot2^{10}}{2^3} =\frac{2^{-2}}{2^3}=2^{-5} Por lo tanto, la respuesta correcta es la opción B.

Respuesta

25 2^{-5}

Ejercicio #4

108+104+(110)16=? 10^8+10^{-4}+(\frac{1}{10})^{-16}=\text{?}

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación para un exponente negativo:

an=1an a^{-n} = \frac{1}{a^n} Aplicamos esta propiedad en el problema:

108+104+(110)16=108+1104+(101)16 10^8+10^{-4}+(\frac{1}{10})^{-16}=10^8+\frac{1}{10^4}+(10^{-1})^{-16} Cuando aplicamos la propiedad de potenciación antes mencionada para el segundo término de la suma del problema, y ​​la misma propiedad pero en la dirección opuesta: la aplicamos para la fracción dentro de los paréntesis del tercer término de la suma,

Ahora recordemos la propiedad de potenciación para un exponente elevado a otro exponente:

(am)n=amn (a^m)^n=a^{m\cdot n} Aplicamos esta propiedad en la expresión que obtuvimos en el último paso:

108+1104+(101)16=108+1104+10(1)(16)=108+1104+1016 10^8+\frac{1}{10^4}+(10^{-1})^{-16}=10^8+\frac{1}{10^4}+10^{(-1)\cdot(-16)}=10^8+\frac{1}{10^4}+10^{16} Cuando aplicamos esta propiedad al tercer término desde la izquierda y simplificamos aún más la expresión resultante,

Resumiendo los pasos de resolución, obtenemos que:

108+104+(110)16=108+1104+(101)16=108+1104+1016 10^8+10^{-4}+(\frac{1}{10})^{-16}=10^8+\frac{1}{10^4}+(10^{-1})^{-16} =10^8+\frac{1}{10^4}+10^{16} Por lo tanto, la respuesta correcta es la opción A.

Respuesta

108+1104+1016 10^8+\frac{1}{10^4}+10^{16}

Ejercicio #5

9?(12)4=163 9^?(\frac{1}{2})^{-4}=\frac{16}{3}

Solución en video

Solución Paso a Paso

Abordamos el problema:

9?(12)4=163 9^?(\frac{1}{2})^{-4}=\frac{16}{3} como una ecuación para todo (y por supuesto es de hecho una ecuación),

Por lo tanto, reemplazamos el signo del problema en la incógnita x y la resolvemos:

9x(12)4=163 9^x(\frac{1}{2})^{-4}=\frac{16}{3}

Ahora discutimos brevemente la técnica de solución:

De manera bastante general, el objetivo al resolver ecuaciones exponenciales es lograr llegar a una situación en la que haya un término en cada uno de los dos lados de la ecuación para que ambos lados tengan la misma base, en tal situación podemos afirmar inequívocamente que los exponentes de potencia en ambos lados de la ecuación son iguales, y resolver una ecuación simple para la incógnita,

De forma matemática, realizaremos una manipulación matemática (según las leyes por supuesto) en ambos lados de la ecuación (o desarrollo de uno de los lados con la ayuda de propiedades de potencia y álgebra) y llegaremos a la siguiente situación:

bm(x)=bn(x) b^{m(x)}=b^{n(x)} cuandom(x),n(x) m(x),\hspace{4pt}n(x) Expresiones algebraicas (en realidad funciones de la incógnitax x ) que también puede excluir a las incógnitas (x x ) que tratamos de encontrar en el problema, que es la solución a la ecuación,

A continuación se afirma que:

m(x)=n(x) m(x)=n(x) y resolvemos la ecuación simple que obtenemos,

Volvemos a resolver la ecuación en el problema dado:

9x(12)4=163 9^x(\frac{1}{2})^{-4}=\frac{16}{3} En la solución de esta ecuación se utilizan varias propiedades de potencias:

a. Propiedad de potencias con exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} b. Propiedad de potencias para una potencia de un exponente elevado a otro exponente:

(am)n=amn (a^m)^n=a^{m\cdot n}

Primero llegaremos a una presentación simple de los términos de la ecuación, es decir, "eliminamos" fracciones y raíces (si hay alguna en el problema, no hay ninguna aquí)

Para ello, comenzamos por tratar la fracción del lado derecho de la ecuación, esto se hará mediante la propiedad de potencias de un exponente negativo especificado en A arriba y representamos esta fracción (entre paréntesis) como término con exponente negativo:

9x(12)4=1639x(21)4=1639x2(1)(4)=1639x24=163 9^x(\frac{1}{2})^{-4}=\frac{16}{3} \\ 9^x(2^{-1})^{-4}=\frac{16}{3}\\ 9^x2^{(-1)\cdot(-4)}=\frac{16}{3}\\ 9^x2^{4}=\frac{16}{3}\\ Cuando realizamos el desarrollo en el lado izquierdo de la ecuación como se describió anteriormente, y en el último paso simplificamos la expresión en el exponente de potencia en el lado izquierdo de la ecuación,

Más adelante nos gustaría poder obtener una base idéntica en ambos lados de la ecuación, la mejor forma de conseguirlo es descomponiendo todos y cada uno de los números del problema en factores primos (utilizando potencias también), aquí en el problema notamos que los números existen:

16,9,3,2 16,\hspace{4pt}9,\hspace{4pt}3,\hspace{4pt}2 Los números: 2, 3 son primos, por lo que no los tocaremos, notaremos que el número 16 es una potencia del número 2 y que el número 9 es una potencia del número 3, es decir:

16=249=32 16=2^4\\ 9=3^2 Esta es la presentación (descomposición) de los números 16 y 9 con la ayuda de sus factores primos, por lo que volveremos a la ecuación que obtuvimos en el paso anterior y reemplazaremos estos números en la descomposición de sus factores primos:

9x24=163(32)x24=243 9^x2^{4}=\frac{16}{3}\\ (3^2)^x2^{4}=\frac{2^4}{3}\\ Ahora notaremos que podemos deshacernos del término.24 2^4 Al dividir los dos lados de la ecuación por él, notaremos además que este término no depende de la incógnita y es diferente de cero y por lo tanto no hay limitación que diga que está prohibido dividirlo, lo haremos así:

(32)x24=243/:24(32)x̸24̸24≠243̸24(32)x=13 (3^2)^x2^{4}=\frac{2^4}{3} \hspace{8pt}\text{/:}2^{4}\\ \frac{(3^2)^x\cdot\not{2^4}}{\not{2^4}}=\frac{\not{2^4}}{3\cdot\not{2^4}} \\ (3^2)^x=\frac{1}{3} Cuando en el primer paso dividimos los dos lados de la ecuación por el término del que queríamos deshacernos y luego simplificamos las fracciones obtenidas en ambos lados de la ecuación,

Ahora volvemos a recordar las leyes de potencias que ya hemos utilizado y que se mencionaron anteriormente:

a. Propiedad de potencias con exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} b. Propiedad de potencias para una potencia de un exponente elevado a otro exponente:

(am)n=amn (a^m)^n=a^{m\cdot n} En el siguiente paso, aplicaremos la ley de potencia elevado a otra potencia especificada en B arriba en la sección izquierda, para deshacernos de los paréntesis, y en el siguiente paso nos ocupamos del lado derecho con el objetivo de deshacer la fracción, para este propósito, usaremos la propiedad de potencias con exponente negativo especificada en A arriba, realizaremos un paso por línea de desarrollo:

(32)x=1332x=1332x=31 (3^2)^x=\frac{1}{3} \\ 3^{2x}=\frac{1}{3} \\ 3^{2x}=3^{-1} Hemos llegado a nuestro objetivo, obtuvimos una ecuación en la que ambos lados tienen términos con la misma base, por lo tanto podemos afirmar que los exponentes de potencia de los términos en ambos lados son iguales, y para resolver la ecuación resultante para la incógnita, realizamos lo siguiente:

32x=312x=1 3^{2x}=3^{-1} \\ \downarrow\\ 2x=-1 Continuamos y resolvemos la ecuación resultante, esto lo haremos mediante el aislamiento la incógnita del lado izquierdo, esto lo lograremos dividiendo ambos lados de la ecuación por su coeficiente:

2x=1/:2x=12 2x=-1 \hspace{8pt}\text{/:}2 \\ \bm{x=-\frac{1}{2} } Hemos resuelto así la ecuación dada, resumimos brevemente los pasos de la solución:9x(12)4=1639x24=163(32)x24=243/:24(32)x=1332x=312x=1/:2x=12 9^x(\frac{1}{2})^{-4}=\frac{16}{3} \\ 9^x2^{4}=\frac{16}{3}\\ (3^2)^x2^{4}=\frac{2^4}{3}\hspace{8pt}\text{/:}2^{4}\\ (3^2)^x=\frac{1}{3} \\ 3^{2x}=3^{-1} \\ \downarrow\\ 2x=-1\hspace{8pt}\text{/:}2 \\ \bm{x=-\frac{1}{2} } Por lo tanto, la respuesta correcta es la opción c.

Respuesta

12 -\frac{1}{2}

ejemplos con soluciones para potencia de fracción

Ejercicio #1

((15)2)?:5=125 ((\frac{1}{5})^2)^?:5=125

Solución en video

Solución Paso a Paso

Abordamos el problema:

((15)2)?:5=125 \big( \big(\frac{1}{5} \big)^2 \big)^?:5=125 como una ecuación para todo (y por supuesto es de hecho una ecuación),

Por lo tanto, reemplazamos el signo del problema en la incógnita x y la resolvemos:

((15)2)x:5=125 \big( \big(\frac{1}{5} \big)^2 \big)^x:5=125 Más adelante recordaremos que dividir por un determinado número es multiplicar por su inverso, por lo que reescribiremos la ecuación dada teniendo esto en cuenta:

((15)2)x15=125 \big( \big(\frac{1}{5} \big)^2 \big)^x\cdot \frac{1}{5}=125

Ahora discutimos brevemente la técnica de solución:

De manera bastante general, el objetivo al resolver ecuaciones exponenciales es lograr llegar a una situación en la que haya un término en cada uno de los dos lados de la ecuación para que ambos lados tengan la misma base, en tal situación podemos afirmar inequívocamente que los exponentes de potencia en ambos lados de la ecuación son iguales, y resolver una ecuación simple para la incógnita,

De forma matemática, realizaremos una manipulación matemática (según las leyes por supuesto) en ambos lados de la ecuación (o desarrollo de uno de los lados con la ayuda de propiedades de potencia y álgebra) y llegaremos a la siguiente situación:

bm(x)=bn(x) b^{m(x)}=b^{n(x)} cuando m(x),n(x) m(x),\hspace{4pt}n(x) Expresiones algebraicas (en realidad funciones de la incógnita x x ) que también puede excluir a las incógnitas (x x ) que tratamos de encontrar en el problema, que es la solución a la ecuación,

A continuación se afirma que:

m(x)=n(x) m(x)=n(x) y resolvemos la ecuación simple que obtenemos,

Volvemos a resolver la ecuación en el problema dado:

((15)2)x15=125 \big( \big(\frac{1}{5} \big)^2 \big)^x\cdot \frac{1}{5}=125 En la solución de esta ecuación se utilizan varias propiedades de potencias:

a. Propiedad de potencias con exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} b. Propiedad de potencias para una potencia de un exponente elevado a otro exponente:

(am)n=amn (a^m)^n=a^{m\cdot n}

Primero llegaremos a una presentación simple de los términos de la ecuación, es decir, "eliminamos" fracciones y raíces (si hay alguna en el problema, no hay ninguna aquí)

Para hacer esto, comenzaremos tratando con la fracción en el lado izquierdo de la ecuación:

15 \frac{1}{5} Es decir, tanto la fracción dentro del paréntesis como la fracción fuera del paréntesis, esto se hace con la ayuda de la propiedad de potencias con exponente negativo especificada en A arriba y representamos esta fracción como un término con potencia negativa y en el siguiente paso aplicaremos la propiedad de potencias para una potencia de un exponente elevado a otro exponente especificada en B arriba y nos desharemos de los paréntesis, otro paso comenzando desde el paréntesis interno hacia el externo, haremos esto, paso a paso por continuación:

((15)2)x15=125((51)2)x51=125(5(1)2)x51=1255(1)2x51=12552x51=125 \big( \big(\frac{1}{5} \big)^2 \big)^x\cdot \frac{1}{5}=125 \\ \big( (5^{-1})^2 \big)^x\cdot 5^{-1}=125 \\ (5^{(-1)\cdot 2} )^x\cdot 5^{-1}=125 \\ 5^{(-1)\cdot 2\cdot x} \cdot 5^{-1}=125 \\ 5^{-2x} \cdot 5^{-1}=125 \\ Cuando llevamos a cabo el desarrollo del lado izquierdo de la ecuación como se describió anteriormente, inicialmente aplicamos la propiedad de potencias con exponente negativo que se mencionó anteriormente en A y en los siguientes pasos aplicamos la propiedad de potencias para una potencia de un exponente elevado a otro exponente mencionado anteriormente en B y nos deshicimos de los paréntesis: comenzando desde el paréntesis interno hasta el externo, en el último paso simplificamos la expresión en el exponente de potencia en el lado izquierdo de la ecuación,

c. Más adelante recordamos la propiedad de potencias para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Y aplicaremos esta ley al lado izquierdo de la ecuación que obtuvimos en el último paso, esto es para tener un término en este lado, haremos esto:

52x51=12552x+(1)=12552x1=125 5^{-2x} \cdot 5^{-1}=125 \\ 5^{-2x+(-1)}=125 \\ 5^{-2x-1}=125 \\ Cuando en el primer paso aplicamos la ley de potencias antes mencionada al producto entre miembros con bases idénticas mencionado anteriormente en C y en los siguientes pasos simplificamos la expresión en el exponente de potencia del lado izquierdo,

A continuación, nos gustaría obtener la misma base en ambos lados de la ecuación, la mejor manera de conseguirlo es descomponiendo todos y cada uno de los números del problema en factores primos (utilizando potencias también), notarán que el número 125 es una potencia del número 5, es decir:

125=53 125=5^3 Esta es la presentación (factorización) del número 125 utilizando su factor primo, que es el número 5, por lo que volvemos a la ecuación que recibimos en el paso anterior y reemplazamos este número por su descomposición en factores primos:

52x1=12552x1=53 5^{-2x-1}=125 \\ 5^{-2x-1}=5^3 \\ Hemos alcanzado nuestro objetivo, hemos recibido una ecuación en la que ambos lados tienen términos con la misma base, por lo tanto podemos afirmar que los exponentes de potencia de los términos en ambos lados son iguales, y para resolver la ecuación resultante para la incógnita, realizaremos esto:

52x1=532x1=3 5^{-2x-1}=5^3 \\ \\ \downarrow\\ -2x-1=3 Continuaremos y resolveremos la ecuación resultante, lo haremos mediante el aislamiento de la incógnita en el lado izquierdo, lo lograremos de la manera habitual, moviendo las secciones y dividiendo la ecuación final por el coeficiente de incógnita:

2x1=32x=3+12x=4/:(2)̸2x̸2=42x=42x=2 -2x-1=3 \\ -2x=3+1\\ -2x=4 \hspace{8pt}\text{/:}(-2) \\ \frac{\not{-2}x}{\not{-2}}=\frac{4}{-2}\\ x=-\frac{4}{2}\\ \bm{x=-2 } Cuando en el primer paso simplificamos la ecuación moviendo los lados, recordando que cuando un término se mueve su signo cambia, luego completamos el aislamiento anulando dividiendo ambos lados de la ecuación por su coeficiente, en los últimos pasos, simplificamos la expresión obtenida al reducir las fracciones,

Hemos resuelto así la ecuación dada, resumimos brevemente los pasos de la solución:

((15)2)x15=125((51)2)x51=12552x51=12552x1=532x1=32x=4/:(2)x=2 \big( \big(\frac{1}{5} \big)^2 \big)^x\cdot \frac{1}{5}=125 \\ \big( (5^{-1})^2 \big)^x\cdot 5^{-1}=125 \\ 5^{-2x} \cdot 5^{-1}=125 \\ 5^{-2x-1}=5^3 \\ \downarrow\\ -2x-1=3 \\ -2x=4 \hspace{8pt}\text{/:}(-2) \\ \bm{x=-2 } Por lo tanto, la respuesta correcta es la opción a.

Respuesta

2 -2

Ejercicio #2

¿Cuál es el resultado de la siguiente potencia?

(23)3 (\frac{2}{3})^3

Solución en video

Respuesta

827 \frac{8}{27}

Ejercicio #3

(132)0(213)2(132)5=? (\frac{13}{2})^0\cdot(\frac{2}{13})^{-2}\cdot(\frac{13}{2})^{-5}=\text{?}

Solución en video

Respuesta

(213)3 (\frac{2}{13})^3

Ejercicio #4

(78)2=? (\frac{7}{8})^{-2}=\text{?}

Solución en video

Respuesta

11549 1\frac{15}{49}

Ejercicio #5

(37)9=? (\frac{3}{7})^{-9}=\text{?}

Solución en video

Respuesta

7939 \frac{7^9}{3^9}

Temas que se aprenden en secciones posteriores

  1. Potencia de una potencia
  2. Las Reglas de Potenciación
  3. Combinando potencias y raíces