Cociente de potencia - Ejemplos, Ejercicios y Soluciones

División de potencias de igual base

Cuando encontremos ejercicios o expresiones con términos que tienen la misma base y entre ellos el signo de dividir o raya fraccionaria, podremos restar los exponentes.
Restaremos el exponente en el denominador del exponente en el numerador.
Es decir:
«exponente del denominador - exponente del numerador» = nuevo exponente
El resultado obtenido de la resta es el nuevo exponente y lo aplicaremos a la base original.

Fórmula de la propiedad:

aman=a(mn)\frac {a^m}{a^n} =a^{(m-n)}

Esta propiedad también es concerniente a expresiones algebraicas.

Temas sugeridos para practicar con anticipación

  1. Multiplicación de potencias de igual base

Practicar Cociente de potencia

ejemplos con soluciones para cociente de potencia

Ejercicio #1

¿Cuál de las cláusulas es igual a la siguiente expresión:

a5:a4 a^5:a^4 ?

Solución en video

Solución Paso a Paso

Primero, para mantener el orden, escribimos la expresión en forma de fracción:

a5a4 \frac{a^5}{a^4} Más adelante recordamos la propiedad de potenciación para dividir términos cuyas bases son iguales:

cmcn=cmn \frac{c^m}{c^n}=c^{m-n} Aplicamos la propiedad en el problema:

a5a4=a54=a1=a \frac{a^5}{a^4}=a^{5-4}=a^1=a Cuando en el segundo paso calculamos el resultado de la operación de resta en el exponente y luego usamos el hecho de que cada número en la 1ra potencia es igual al número mismo, significando que:

X1=X X^1=X Obtenemos que: a5a4=a \frac{a^5}{a^4}=a Por lo tanto, la respuesta correcta es A.

Respuesta

a a

Ejercicio #2

2423= \frac{2^4}{2^3}=

Solución en video

Solución Paso a Paso

Tengamos en cuenta que el numerador y denominador de la fracción tienen términos con la misma base, por lo tanto usamos la propiedad de potencias para dividir entre términos con la misma base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} Lo aplicamos en el problema:

2423=243=21 \frac{2^4}{2^3}=2^{4-3}=2^1 Recordemos que todo número elevado a la 1ª potencia es igual al número mismo, es decir que:

b1=b b^1=b Por lo tanto en el problema obtenemos:

21=2 2^1=2 Por lo tanto, la respuesta correcta es la opción a.

Respuesta

2 2

Ejercicio #3

8132= \frac{81}{3^2}=

Solución en video

Solución Paso a Paso

Primero reconocemos que 81 es una potencia del número 3, lo que significa que:

34=81 3^4=81 Reemplazamos en el problema:

8132=3432 \frac{81}{3^2}=\frac{3^4}{3^2} Tengamos en cuenta que el numerador y denominador de la fracción tienen términos con la misma base, por lo tanto usamos la propiedad de potencias para dividir entre términos con la misma base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} Lo aplicamos en el problema:

3432=342=32 \frac{3^4}{3^2}=3^{4-2}=3^2 Por lo tanto, la respuesta correcta es la opción b.

Respuesta

32 3^2

Ejercicio #4

Resuelva el ejercicio

aaab= \frac{a^a}{a^b}=

Solución en video

Solución Paso a Paso

Tengamos en cuenta que se requiere realizar una operación de división entre dos términos con bases idénticas, por lo tanto usaremos la propiedad de potencias para dividir entre términos con bases idénticas:

cmcn=cmn \frac{c^m}{c^n}=c^{m-n} Destacamos que el uso de esta propiedad sólo es posible cuando la división se realiza entre términos con bases idénticas.

Regresamos al problema y aplicamos la mencionada propiedad de potencias:

aaab=aab \frac{a^a}{a^b}=a^{a-b} Por lo tanto, la respuesta correcta es la opción D.

Respuesta

aab a^{a-b}

Ejercicio #5

Resuelva el ejercicio

a5a3= \frac{a^5}{a^3}=

Solución en video

Solución Paso a Paso

Tengamos en cuenta que se requiere realizar una operación de división entre dos términos con bases idénticas, por lo tanto usaremos la propiedad de potencias para dividir entre términos con bases idénticas:

cmcn=cmn \frac{c^m}{c^n}=c^{m-n} Destacamos que el uso de esta propiedad sólo es posible cuando la división se realiza entre términos con bases idénticas.

Regresamos al problema y aplicamos la mencionada propiedad de potencias:

a5a3=a53=a2 \frac{a^5}{a^3}=a^{5-3}=a^2 Por lo tanto, la respuesta correcta es la opción A.

Respuesta

a2 a^2

ejemplos con soluciones para cociente de potencia

Ejercicio #1

Resuelva el ejercicio

a7a3= \frac{a^7}{a^3}=

Solución en video

Solución Paso a Paso

Tengamos en cuenta que se requiere realizar una operación de división entre dos términos con bases idénticas, por lo tanto usaremos la propiedad de potencias para dividir entre términos con bases idénticas:

cmcn=cmn \frac{c^m}{c^n}=c^{m-n} Destacamos que el uso de esta propiedad sólo es posible cuando la división se realiza entre términos con bases idénticas.

Regresamos al problema y aplicamos la mencionada propiedad de potencias:

a7a3=a73=a4 \frac{a^7}{a^3}=a^{7-3}=a^4 Por lo tanto, la respuesta correcta es la opción C.

Respuesta

a4 a^4

Ejercicio #2

Resuelva el ejercicio

a3a1= \frac{a^3}{a^1}=

Solución en video

Solución Paso a Paso

Tengamos en cuenta que se requiere realizar una operación de división entre dos términos con bases idénticas, por lo tanto usaremos la propiedad de potenciación para dividir entre términos con bases idénticas:

cmcn=cmn \frac{c^m}{c^n}=c^{m-n} Destacamos que el uso de esta propiedad sólo es posible cuando la división se realiza entre términos con bases idénticas.

Regresamos al problema y aplicamos la propiedad de potenciación mencionada:

a3a1=a31=a2 \frac{a^3}{a^1}=a^{3-1}=a^2 Por lo tanto, la respuesta correcta es la opción A.

Respuesta

a2 a^2

Ejercicio #3

2738=? \frac{27}{3^8}=\text{?}

Solución en video

Solución Paso a Paso

Primero tengamos en cuenta que 27 es una potencia del número 3:

27=33 27=3^3 Usando este hecho se da una situación en la que en el numerador de la fracción y su denominador obtendremos términos con bases idénticas, lo aplicamos en el problema:

2738=3338 \frac{27}{3^8}=\frac{3^3}{3^8} Ahora recordemos la propiedad de potenciación para la división entre términos sin bases idénticas:

aman=amn \frac{a^m}{a^n}=a^{m-n} Aplicamos la propiedad en la última expresión que obtuvimos:

3338=338=35 \frac{3^3}{3^8}=3^{3-8}=3^{-5} Cuando en la primera etapa aplicamos la propiedad antes mencionada y en la segunda etapa simplificamos la expresión que recibimos en el exponente,

Resumimos los pasos de resolución, obtuvimos:

2738=3338=35 \frac{27}{3^8}=\frac{3^3}{3^8}=3^{-5} Por lo tanto, la respuesta correcta es la opción D.

Respuesta

35 3^{-5}

Ejercicio #4

Simplifica el ejercicio

a9ax \frac{a^9}{a^x}

Solución en video

Solución Paso a Paso

Tengamos en cuenta que en el problema hay una fracción en el numerador y denominador con términos de bases idénticas, por lo que utilizamos la propiedad de división entre términos de bases idénticas para resolver el ejercicio:

cmcn=cmn \frac{c^m}{c^n}=c^{m-n} Aplicamos en el problema la propiedad anteriormente mencionada:

a9ax=a9x \frac{a^9}{a^x}=a^{9-x} Por lo tanto, la respuesta correcta es la opción C.

Respuesta

a9x a^{9-x}

Ejercicio #5

Resuelve el siguiente ejercicio

a7ya5x \frac{a^{7y}}{a^{5x}}

Solución en video

Solución Paso a Paso

Tengamos en cuenta que en el problema hay una fracción en el numerador y denominador con términos de bases idénticas, por lo que utilizamos la propiedad de división entre términos de bases idénticas para resolver el ejercicio:

cmcn=cmn \frac{c^m}{c^n}=c^{m-n} Aplicamos en el problema la propiedad anteriormente mencionada:

a7ya5x=a7y5x \frac{a^{7y}}{a^{5x}}=a^{7y-5x} Por lo tanto, la respuesta correcta es la opción A.

Respuesta

a7y5x a^{7y-5x}

ejemplos con soluciones para cociente de potencia

Ejercicio #1

Resuelva el ejercicio

bybxbzb3= \frac{b^{\frac{y}{}}}{b^x}-\frac{b^z}{b^3}=

Solución en video

Solución Paso a Paso

Tengamos en cuenta que se requiere realizar una operación de división entre dos términos con bases idénticas, por lo tanto usaremos la propiedad de potencias para dividir entre términos con bases idénticas:

cmcn=cmn \frac{c^m}{c^n}=c^{m-n} Destacamos que el uso de esta propiedad sólo es posible cuando la división se realiza entre términos con bases idénticas.

Regresemos al problema y apliquemos la mencionada propiedad de potencias a cada término del ejercicio por separado:

bybxbzb3=byxbz3 \frac{b^{\frac{y}{}}}{b^x}-\frac{b^z}{b^3}=b^{y-x}-b^{z-3} Por lo tanto, la respuesta correcta es la opción A.

Respuesta

byxbz3 b^{y-x}-b^{z-3}

Ejercicio #2

Resuelva el ejercicio

a4a6= \frac{a^4}{a^{-6}}=

Solución en video

Solución Paso a Paso

Tengamos en cuenta que se requiere realizar una operación de división entre dos términos con bases idénticas, por lo tanto usaremos la propiedad de potenciación para dividir entre términos con bases idénticas:

cmcn=cmn \frac{c^m}{c^n}=c^{m-n} cmcn=cmn \frac{c^m}{c^n}=c^{m-n} Destacamos que el uso de esta propiedad sólo es posible cuando la división se realiza entre términos con bases idénticas.

Regresamos al problema y aplicamos la propiedad de potenciación mencionada:

a4a6=a4(6)=a4+6=a10 \frac{a^4}{a^{-6}}=a^{4-(-6)}=a^{4+6}=a^{10} Por lo tanto, la respuesta correcta es la opción C.

Respuesta

a10 a^{10}

Ejercicio #3

Resuelva el ejercicio

14a37a3= \frac{14a^{-3}}{7a^{-3}}=

Solución en video

Solución Paso a Paso

Tengamos en cuenta que el numerador y el denominador de la fracción tienen términos con bases idénticas, por lo tanto usaremos la división entre términos con bases idénticas:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} Lo aplicamos en el problema:

14a37a3=2a3(3)=2a3+3=2a0 \frac{14a^{-3}}{7a^{-3}}=2a^{-3-(-3)}=2a^{-3+3}=2a^0 Cuando en el primer paso reducimos la parte numérica de la fracción, esta operación es correcta e intuitiva porque siempre es posible anotar de antemano la mencionada fracción como producto de fracciones y simplificar:

14a37a3=147a3a3=2a3(3)= \frac{14a^{-3}}{7a^{-3}}=\frac{14}{7}\cdot\frac{a^{-3}}{a^{-3}}=2a^{-3-(-3)}=\ldots Regresamos al problema y recordemos que todo número elevado a la 0ª potencia es 1, es decir:

b0=1 b^0=1 Por lo tanto, en el problema obtenemos:

2a0=21=2 2a^0=2\cdot1=2 Por lo tanto, la respuesta correcta es la opción B.

Respuesta

2 2

Ejercicio #4

Resuelva el ejercicio

3a26a6= \frac{-3a^{-2}}{-6a^{-6}}=

Solución en video

Solución Paso a Paso

Tengamos en cuenta que el numerador y el denominador de la fracción tienen términos con bases idénticas, por lo tanto usaremos la propiedad de división entre términos con bases idénticas:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} Lo aplicamos en el problema:

3a26a6=12a2(6)=12a2+6=12a4 \frac{-3a^{-2}}{-6a^{-6}}=\frac{1}{2}\cdot a^{-2-(-6)}=\frac{1}{2}\cdot a^{-2+6}=\frac{1}{2}\cdot a^4 Cuando en el primer paso reducimos la parte numérica de la fracción, esta operación es correcta e intuitiva porque siempre es posible anotar de antemano la mencionada fracción como producto de fracciones y reducir:

3a26a6=36a2a6=12a2a6= \frac{-3a^{-2}}{-6a^{-6}}=\frac{-3}{-6}\cdot\frac{a^{-2}}{a^{-6}}=\frac{1}{2}\cdot\frac{a^{-2}}{a^{-6}}=\ldots Regresamos al problema, obtenemos la expresión:

12a4 \frac{1}{2}\cdot a^4 Por lo tanto, la respuesta correcta es la opción C.

Respuesta

12a4 \frac{1}{2}a^4

Ejercicio #5

Resuelva el ejercicio

3a22a= \frac{3a^2}{2a}=

Solución en video

Solución Paso a Paso

Tengamos en cuenta que el numerador y el denominador de la fracción tienen términos con bases idénticas, por lo tanto usaremos la propiedad de división entre términos con bases idénticas:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} Lo aplicamos en el problema:

3a22a=32a21=32a1 \frac{3a^2}{2a}=\frac{3}{2}\cdot a^{2-1}=\frac{3}{2}\cdot a^1 Cuando en el primer paso reducimos la parte numérica de la fracción, esta operación es correcta e intuitiva porque siempre es posible anotar de antemano la mencionada fracción como producto de fracciones y reducir:

3a22a=32a2a=32a21= \frac{3a^2}{2a}=\frac{3}{2}\cdot\frac{a^2}{a}=\frac{3}{2}\cdot a^{2-1}=\ldots Volvamos al problema, recordemos que todo número elevado a 1 es igual al número mismo, es decir que:

b1=b b^1=b Lo aplicamos en el problema:

32a1=32a=112a \frac{3}{2}\cdot a^1=\frac{3}{2}\cdot a=1\frac{1}{2}a Cuando en el último paso convertimos la fracción en una fracción mixta.

Por lo tanto, la respuesta correcta es la opción D.

Respuesta

112a 1 \frac{1}{2}a

Temas que se aprenden en secciones posteriores

  1. Potencia de una multiplicación
  2. Potencia de un cociente
  3. Potencia de una potencia
  4. Las Reglas de Potenciación
  5. Combinando potencias y raíces