Ejemplos, ejercicios y soluciones de multiplicación de potencias de igual base

¿Quieres aprender multiplicar potencias con la misma base?

¡Lo primordial en el estudio de las matemáticas, como ya lo sabes, es la práctica!
En esta página encontrarás más de 5 ejemplos y ejercicios con soluciones sobre multiplicación de potencias con base igual.

Si te interesa, existe la posibilidad de practicar el cálculo de otros temas relacionados, como por ejemplo:

En cada uno de estos enlaces puedes practicar por tu cuenta y profundizar tus conocimientos.

🏆Ejercicios de multiplicación de potencias

¿Por qué es importante que practiques la multiplicación de potencias?

Incluso si ya estudiamos las reglas de potenciación y estamos seguros de haber entendido el asunto en general, ¡es fundamental que intentes resolver ejercicios por tu cuenta!
Vale la pena experimentar tantos tipos de preguntas como sea posible y analizar la mayor cantidad de ejemplos sobre multiplicación de potencias con base igual.
Solo practicando y resolviendo un amplio número de preguntas y ejercicios con multiplicación de potencias, podrás asimilar a fondo el tema y adquirirás las herramientas necesarias para enfrentar cualquier desafío por tus propios medios.

Preguntas básicas

Ejemplos y ejercicios con soluciones de multiplicación de potencias de igual base

Ejercicio #1

828385= 8^2\cdot8^3\cdot8^5=

Solución

Todas las bases son iguales y por lo tanto se pueden sumar los exponentes.

828385=810 8^2\cdot8^3\cdot8^5=8^{10}

Respuesta

810 8^{10}

Ejercicio #2

(35)4= (3^5)^4=

Solución

Para resolver el ejercicio usamos la propiedad de potencias.(an)m=anm (a^n)^m=a^{n\cdot m}

Utilizamos la propiedad con el ejercicio específico y resolvemos:

(35)4=35×4=320 (3^5)^4=3^{5\times4}=3^{20}

Respuesta

320 3^{20}

Ejercicio #3

(4274)2= (\frac{4^2}{7^4})^2=

Solución

Utilizamos la fórmula:

(ab)n=anbn (\frac{a}{b})^n=\frac{a^n}{b^n}

(4274)2=(42)2(74)2 (\frac{4^2}{7^4})^2=\frac{(4^2)^2}{(7^4)^2}

Ahora utilizamos la fórmula para multiplicar potencias:

(an)m=an×m (a^n)^m=a^{n\times m}

42×274×2=4478 \frac{4^{2\times2}}{7^{4\times2}}=\frac{4^4}{7^8}

Respuesta

4478 \frac{4^4}{7^8}

Ejercicio #4

Simplifique la expresión:

a3a2b4b5= a^3\cdot a^2\cdot b^4\cdot b^5=

Solución

En el ejercicio de multiplicación de potencias sumaremos todas las potencias de un mismo producto, en este caso los términos a,b

Utilizamos la fórmula:

an×am=an+m a^n\times a^m=a^{n+m}

Vamos a enfocarnos en el término a:

a3×a2=a3+2=a5 a^3\times a^2=a^{3+2}=a^5

Vamos a enfocarnos en el término b:

b4×b5=b4+5=b9 b^4\times b^5=b^{4+5}=b^9

Por lo tanto, el ejercicio que se obtendrá tras la simplificación es:

a5×b9 a^5\times b^9

Respuesta

a5b9 a^5\cdot b^9

Ejercicio #5

k2t4k6t2= k^2\cdot t^4\cdot k^6\cdot t^2=

Solución

Usando la propiedad de potencias para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Cabe destacar que esta ley sólo es válida para términos con bases idénticas,

Notamos que en el problema hay dos tipos de términos que difieren entre sí en diferentes bases. Primero, por el bien del orden, usaremos la propiedad sustitutiva en la multiplicación para ordenar la expresión de manera que los dos términos con la misma base sean adyacentes, procederemos a trabajar:

k2t4k6t2=k2k6t4t2 k^2t^4k^6t^2=k^2k^6t^4t^2 Más adelante aplicamos la mencionada propiedad de multiplicación a cada tipo diferente de término por separado,

k2k6t4t2=k2+6t4+2=k8t6 k^2k^6t^4t^2=k^{2+6}t^{4+2}=k^8t^6 Cuando en realidad aplicamos la propiedad antes mencionada por separado - para los términos cuyas bases sonk k y para los términos cuyas bases sont t Sumamos las potencias en el exponente cuando insertamos todos los términos con la misma base.

La respuesta correcta entonces es la opción b.

Respuesta

k8t6 k^8\cdot t^6

Ejercicio #6

3x2x32x= 3^x\cdot2^x\cdot3^{2x}=

Solución

En este caso tenemos 2 bases diferentes, por lo que sumaremos lo que se puede sumar, es decir, los exponentes de 3 3

3x2x32x=2x33x 3^x\cdot2^x\cdot3^{2x}=2^x\cdot3^{3x}

Respuesta

33x2x 3^{3x}\cdot2^x

Ejercicio #7

22x+12523x= 2^{2x+1}\cdot2^5\cdot2^{3x}=

Solución

Como las bases son iguales, se pueden sumar los exponentes:

2x+1+5+3x=5x+6 2x+1+5+3x=5x+6

Respuesta

25x+6 2^{5x+6}

¿Cuántos ejercicios y ejemplos de multiplicación de potencias de igual base es necesario realizar?

La cantidad de ejercicios y ejemplos que debemos practicar, varía de persona en persona.
En general, recomendamos resolver muchas pruebas y observar varios ejemplos para que, en total, estos cubran la mayor cantidad de tipos de ejercicios posibles.
Cuanto más ejercites con diferentes multiplicaciones de potencias, comprenderás el tema más profundamente y aumentará la probabilidad de que te vaya bien y que tengas éxito.

Las preguntas más nuevas