Dado el siguiente rectángulo:
¿Cuál es el perímetro del rectángulo ABCD?
¡Lo primordial en el estudio de las matemáticas, como ya lo sabes, es la práctica!
En esta página encontrarás más de 5 ejemplos y ejercicios con soluciones sobre el perímetro de un rectángulo.
Si te interesa, existe la posibilidad de practicar el cálculo del perímetro de otros polígonos, como por ejemplo:
Perímetro de un triángulo, Perímetro de un paralelogramo, Perímetro de un trapecio y El perímetro de la circunferencia. Para que puedas practicar por tu cuenta y profundizar tus conocimientos.
Incluso si ya estudiamos la fórmula para calcular el perímetro de un rectángulo y estamos seguros de haber entendido el asunto en general, ¡es importante que intentes resolver ejercicios por tu cuenta!
Vale la pena experimentar tantos tipos de preguntas como sea posible y analizar la mayor cantidad de ejemplos con cálculos de perímetros de diferentes rectángulos.
Solo practicando y resolviendo un amplio número de preguntas y ejercicios con una variedad de cálculos, podrás asimilar a fondo el tema y adquirirás las herramientas necesarias para enfrentar cualquier desafío por tus propios medios.
Dado el rectángulo que tiene un lado AB de largo 2 cm y el lado BC de largo 7 cm.
¿Cuál es el perímetro del rectángulo?
Dado el rectángulo que tiene un lado DC de largo 1.5 cm y el lado AD de largo 9.5 cm.
¿Cuál es el perímetro del rectángulo?
Dado el siguiente rectángulo:
¿Cuál es el perímetro del rectángulo ABCD?
Dado el siguiente rectángulo:
¿Cuál es el perímetro del rectángulo ABCD?
Dado el siguiente rectángulo:
¿Cuál es el perímetro del rectángulo ABCD?
Dado el siguiente rectángulo:
¿Cuál es el perímetro del rectángulo ABCD?
Dado que en el rectángulo más pequeño ED=CF=4 (cada par de lados opuestos en el rectángulo son iguales)
Ahora podemos calcular en el rectángulo ABCD que BC=6+4=10
Ahora podemos afirmar en el rectángulo ABCD que BC=AD=10
Calcula el perímetro del rectángulo sumando todos los lados:
DC=AB=15
El perímetro del rectángulo ABCD es igual a:
50
Dado el siguiente rectángulo:
¿Cuál es el perímetro del rectángulo ABCD?
En la consigna tenemos dos rectángulos que están conectados por un lado común,
El cuadrilátero izquierdo, AEFD, tiene un lado conocido - AD
El cuadrilátero derecho, EBCF, también tiene un solo lado conocido: FC
En la pregunta nos piden el perímetro del rectángulo ABCD,
Para esto necesitamos sus lados, y dado que los lados opuestos en un rectángulo son iguales, necesitamos al menos dos lados adyacentes.
Se nos da el lado AD, pero el lado DC solo se da parcialmente.
No tenemos forma de encontrar la parte que falta: DF, por lo que no tenemos forma de responder la pregunta.
¡Esta es la solución!
No es posible saber
Dado el siguiente rectángulo:
¿Cuál es el perímetro del rectángulo ABCD?
De acuerdo con los datos tengamos en cuenta:
Ahora podemos calcular BC:
Prestamos atención a los datos adicionales que conocemos y parece que:
Ahora podemos calcular AB:
Ahora podemos calcular el perímetro del rectángulo ABCD:
38
Dado el rectángulo que tiene un lado AB de largo 4.8 cm y el lado AD de largo 12 cm.
¿Cuál es el perímetro del rectángulo?
En el dibujo tenemos un rectángulo, aunque no está colocado en su forma estándar y está ligeramente girado,
pero esto no afecta que sea un rectángulo, y todavía tiene todas las propiedades de un rectángulo.
El perímetro de un rectángulo es la suma de todos sus lados, es decir, para hallar el perímetro del rectángulo tendremos que sumar las longitudes de todos los lados.
También sabemos que en un rectángulo los lados opuestos son iguales.
Por lo tanto, podemos usar los lados existentes para completar las longitudes que faltan.
4.8+4.8+12+12 =
33.6 cm
33.6 cm
¿Cuál es el perímetro del área rectangular según los datos?
26
Dado el siguiente rectángulo:
Dado que el perímetro del triángulo BCD es 20.
Halla el perímetro del rectángulo ABCD.
Dado que el perímetro del triángulo BCD es 20
Por lo tanto podemos colocar los datos existentes y calcular:
Ahora podemos calcular el lado BC: 2+2=4
Perímetro del rectángulo ABCD:
20
Dado el paralelogramo ABCD,
y dentro un rectángulo AEFC cuyo perímetro es 24.
AE=8 BC=5
¿Cuál es el área del paralelogramo?
En el primer paso debemos hallar la longitud de EC, que identificaremos con una X.
Sabemos que el perímetro de un rectángulo es la suma de todos sus lados (AE+EC+CF+FA),
Como en el rectángulo los lados opuestos son iguales, la fórmula también se puede escribir así: 2AE=2EC.
Reemplazamos los datos conocidos:
Aislamos a X:
y dividimos por 2:
Ahora podemos usar la fórmula pitagórica para hallar EB.
(Pitágoras: )
Aislamos la incógnita
Extraemos la raíz de la ecuación.
El área de un paralelogramo es la altura multiplicada por el lado al que desciende la altura, es decir.
Y por lo tanto aplicaremos la fórmula del área:
44
La cantidad de ejercicios y ejemplos de perímetro de un rectángulo para niños que debemos practicar, varía de persona en persona.
En general, recomendamos resolver muchas pruebas y observar varios ejemplos para que, en total, estos cubran la mayor cantidad de tipos de ejercicios posibles.
Cuanto más ejercites con cálculos de diferentes perímetros de rectángulos, comprenderás el tema más profundamente y aumentará la probabilidad de que te vaya bien y que tengas éxito.
Dado el rectángulo cuyo perímetro es igual a 18, según los datos encontrados en el dibujo X
Perímetro del rectángulo 14 cm
Área del rectángulo 12 cm²
¿Cuáles son las longitudes de sus lados?
Calcula el perímetro del rectángulo
Es sabido que \( x=5 \)
Calcula el perímetro del rectángulo
Calcula el perímetro del rectángulo
Es sabido que \( x=2 \)