Las fórmulas de multiplicación abreviadas se utilizarán a lo largo de nuestros estudios de matemáticas, desde la escuela primaria hasta la secundaria. En muchos casos, necesitaremos saber cómo abrir o sumar estas ecuaciones para llegar a la solución de varios ejercicios de matemáticas.

Al igual que otros temas de matemáticas, incluso en el caso de las fórmulas de multiplicación abreviadas, no hay nada que temer. La comprensión de las fórmulas y mucha práctica en el tema le brindará un control total. Así que comencemos :)

Las fórmulas de multiplicación abreviadas de 2º grado

Estas son las fórmulas básicas de la multiplicación abreviada:

(X+Y)2=X2+2XY+Y2(X + Y)^2=X^2+ 2XY + Y^2

(XY)2=X22XY+Y2(X - Y)^2=X^2 - 2XY + Y^2

(X+Y)×(XY)=X2Y2(X + Y)\times (X - Y) = X^2 - Y^2


Las fórmulas de multiplicación abreviadas de 3º grado

(a+b)3=a3+3a2b+3ab2+b3(a+b)^3=a^3+3a^2 b+3ab^2+b^3

​​​​​​​(ab)3=a33a2b+3ab2b3​​​​​​​(a-b)^3=a^3-3a^2 b+3ab^2-b^3


Verificación de las fórmulas de multiplicación abreviadas

Probaremos las fórmulas de multiplicación abreviadas mediante la apertura del paréntesis.

(X+Y)2=(X+Y)×(X+Y)=(X + Y)^2 = (X + Y)\times (X+Y) =

X2+XY+YX+Y2=X^2 + XY + YX + Y^2=

Puesto que: XY=YXXY = YX

X2+2XY+Y2X^2 + 2XY + Y^2


(XY)2=(XY)×(XY)=(X - Y)^2 = (X - Y)\times (X-Y) =

X2XYYX+Y2=X^2 - XY - YX + Y^2=

Puesto que:XY=YX XY = YX

X22XY+Y2X^2 - 2XY + Y^2


(X+Y)×(XY)=(X + Y)\times (X-Y) =

X2XY+YX+Y2=X^2 - XY + YX + Y^2=

Puesto que: XY=YX XY = YX

XY+YX=0 - XY + YX = 0

X2+2XY+Y2X^2 + 2XY + Y^2


Práctica de multiplicación abreviada

(X+2)2=X28(X + 2)^2=X^2 - 8

(X+2)2=X28-(X + 2)^2=-X^2 - 8

(X+3)2=(X4)×(X+4)(X + 3)^2=(X-4)\times (X+4)


Soluciones para la práctica de multiplicación abreviada

(X+2)2=X28(X + 2)^2=X^2 - 8

(X+2)2=X28-(X + 2)^2=-X^2 - 8

(X+3)2=(X4)×(X+4)(X + 3)^2=(X-4)\times (X+4)


Practicar Fórmulas de multiplicación abreviadas

Ejercicio #1

Resuelva el siguiente ejercicio:

(2+x)(2x)=0 (2+x)(2-x)=0

Solución en video

Solución Paso a Paso

Utilizamos la fórmula de multiplicación abreviada:

4x2=0 4-x^2=0

Movemos las secciones y extraemos la raíz:

4=x2 4=x^2

x=4 x=\sqrt{4}

x=±2 x=\pm2

Respuesta

±2

Ejercicio #2

¿A cuánto equivale la expresión? (x+3)2 (x+3)^2 ?

Solución en video

Solución Paso a Paso

Usamos la fórmula de multiplicación abreviada:

x2+2×x×3+32= x^2+2\times x\times3+3^2=

x2+6x+9 x^2+6x+9

Respuesta

x2+6x+9 x^2+6x+9

Ejercicio #3

¿A cuánto equivale la expresión?

(xy)2 (x-y)^2

Solución en video

Solución Paso a Paso

Usamos la fórmula de multiplicación abreviada:

(xy)(xy)= (x-y)(x-y)=

x2xyyx+y2= x^2-xy-yx+y^2=

x22xy+y2 x^2-2xy+y^2

Respuesta

x22xy+y2 x^2-2xy+y^2

Ejercicio #4

4x2+20x+25= 4x^2+20x+25=

Solución en video

Solución Paso a Paso

En esta consigna, se nos pide que reduzcamos la fórmula usando las fórmulas de multiplicación abreviadas.

Recordemos las fórmulas:

(xy)2=x22xy+y2 (x-y)^2=x^2-2xy+y^2

 (x+y)2=x2+2xy+y2 (x+y)^2=x^2+2xy+y^2

(x+y)×(xy)=x2y2 (x+y)\times(x-y)=x^2-y^2

Dado que en el ejercicio dado solo hay operación de suma, la fórmula apropiada es la segunda:

Ahora intentemos pensar, ¿qué número multiplicado por sí mismo será igual a 4 y qué número multiplicado por sí mismo será igual a 25?

Las respuestas son respectivamente 2 y 5:

Escribiremos:

(2x+5)2= (2x+5)^2=

(2x+5)(2x+5)= (2x+5)(2x+5)=

2x×2x+2x×5+2x×5+5×5= 2x\times2x+2x\times5+2x\times5+5\times5=

4x2+20x+25 4x^2+20x+25

Eso significa que nuestra solución es correcta.

Respuesta

(2x+5)2 (2x+5)^2

Ejercicio #5

(7+x)(7+x)=? (7+x)(7+x)=\text{?}

Solución en video

Solución Paso a Paso

De acuerdo a la fórmula de multiplicación acortada:

Como 7 y X aparecen dos veces, elevamos ambos términos a la potencia:

(7+x)2 (7+x)^2

Respuesta

(7+x)2 (7+x)^2

Ejercicio #1

(x2)2+(x3)2= (x-2)^2+(x-3)^2=

Solución en video

Solución Paso a Paso

Para resolver la pregunta, necesitamos conocer una de las fórmulas de multiplicación abreviadas:

(xy)2=x22xy+y2 (x−y)^2=x^2−2xy+y^2

Ahora, aplicamos esta propiedad dos veces:

(x2)2=x24x+4 (x-2)^2=x^2-4x+4

(x3)2=x26x+9 (x-3)^2=x^2-6x+9

Ahora sumamos:

x24x+4+x26x+9= x^2-4x+4+x^2-6x+9=

2x210x+13 2 x^2-10x+13

Respuesta

2x210x+13 2x^2-10x+13

Ejercicio #2

(2[x+3])2= (2\lbrack x+3\rbrack)^2=

Solución en video

Solución Paso a Paso

Primero resolveremos el ejercicio abriendo los corchetes interiores:

(2[x+3])²

(2x+6)²

Ahora usaremos la fórmula de multiplicación abreviada:

(X+Y)²=+2XY+

(2x+6)² = 2x² + 2x*6*2 + 6² = 2x+24x+36

Respuesta

4x2+24x+36 4x^2+24x+36

Ejercicio #3

2(x+3)2+3(x+2)2= 2(x+3)^2+3(x+2)^2=

Solución en video

Solución Paso a Paso

Para resolver el ejercicio, recuerda las fórmulas de multiplicación abreviadas:

(x+y)2=x2+2xy+y2 (x+y)^2=x^2+2xy+y^2

Comencemos usando la propiedad en ambos casos:

(x+3)2=x2+6x+9 (x+3)^2=x^2+6x+9

(x+2)2=x2+4x+4 (x+2)^2=x^2+4x+4

Los colocaremos de nuevo en la fórmula:

2(x2+6x+9)+3(x2+4x+4)= 2(x^2+6x+9)+3(x^2+4x+4)=

2x2+12x+18+3x2+12x+12= 2x^2+12x+18+3x^2+12x+12=

5x2+24x+30 5x^2+24x+30

Respuesta

5x2+24x+30 5x^2+24x+30

Ejercicio #4

(2x)23=6 (2x)^2-3=6

Solución en video

Solución Paso a Paso

Movemos las secciones e igualamos a 0

4x236=0 4x^2-3-6=0

4x29=0 4x^2-9=0

Utilizamos la fórmula de multiplicación abreviada:

4(x294)=0 4(x^2-\frac{9}{4})=0

x2(32)2=0 x^2-(\frac{3}{2})^2=0

(x32)(x+32)=0 (x-\frac{3}{2})(x+\frac{3}{2})=0

x=±32 x=\pm\frac{3}{2}

Respuesta

±32 ±\frac{3}{2}

Ejercicio #5

(x+1)2+(x+2)2= (x+1)^2+(x+2)^2=

Solución en video

Solución Paso a Paso

Para resolver el ejercicio, necesitaremos saber la fórmula de multiplicación abreviada:

En este ejercicio, usaremos la fórmula dos veces:

(x+1)2=x2+2x+1 (x+1)^2=x^2+2x+1

(x+2)2=x2+4x+4 (x+2)^2=x^2+4x+4

Ahora, sumamos:

x2+2x+1+x2+4x+4=2x2+6x+5 x^2+2x+1+x^2+4x+4=2x^2+6x+5

x²+2x+1+x²+4x+4=
2x²+6x+5

Tenga en cuenta que se puede extraer un factor común de parte de los dígitos: 2(x2+3x)+5 2(x^2+3x)+5

Respuesta

2(x2+3x)+5 2(x^2+3x)+5

Ejercicio #1

Dado el cuadrado:

AAABBBDDDCCCX-7

Expresa el área del cuadrado

Solución en video

Solución Paso a Paso

Recuerda que el área del cuadrado es igual al lado del cuadrado elevado a la 2da potencia.

La fórmula del área del cuadrado es

A=L2 A=L^2

Colocamos los datos en la fórmula:

A=(x7)2 A=(x-7)^2

Respuesta

(x7)2 (x-7)^2

Ejercicio #2

Declara la expresión dada como una suma

(7b3x)2 (7b-3x)^2

Solución en video

Respuesta

49b242bx+9x2 49b^2-42bx+9x^2

Ejercicio #3

(4b3)(4b3) (4b-3)(4b-3)

Declara la expresión como una expresión de potencia y como una expresión de suma

Solución en video

Respuesta

(4b3)2 (4b-3)^2

16b224b+9 16b^2-24b+9

Ejercicio #4

Declara la expresión dada mediante una suma y una multiplicación

(3xy)2 (3x-y)^2

Solución en video

Respuesta

9x26xy+y2 9x^2-6xy+y^2

(3xy)(3xy) (3x-y)(3x-y)

Ejercicio #5

(a4)(a4)=? (a-4)(a-4)=\text{?}

Solución en video

Respuesta

a28a+16 a^2-8a+16