Suma y resta de números dirigidos - Ejemplos, Ejercicios y Soluciones

La suma y la resta de números reales de se basan en ciertos principios clave. Se explicarán todos los principios con dos números reales, pero, ciertamente, los números en el ejercicio no influyen al modo de resolución, por lo tanto, se pueden aplicar estos principios a cualquier número del ejercicio.

A1 - Suma y resta de números reales

Cuando tenemos dos números reales con el mismo signo (más o menos), este signo permanecerá en el resultado, que será, de hecho, el resultado de la suma. Es decir, si los dos números llevan el signo más el resultado de la adición (suma) también será positivo. Si los dos números llevan el signo menos el resultado de la sustracción (resta) también será negativo.
+6+4=+10+6+4=+10
64=10-6-4=-10


  • Cuando tenemos dos números que llevan signos diferentes es primordial determinar cuál de los dos tiene el mayor valor absoluto (absoluto: la distancia del cero). El número más grande determinará el signo que llevará el resultado y, de hecho, haremos una operación de sustracción.
    +64=+2+6-4=+2
    6+4=2-6+4=-2

  • Cuando tengamos un ejercicio con una secuencia de dos signos (separados generalmente por paréntesis) diferenciaremos entre varios casos:

  • Cuando la secuencia es de dos signos de sumar el resultado también será positivo
    6+(+4)=+106+(+4)=+10

  • Cuando la secuencia es de dos signos de restar el resultado también será positivo
    6(4)=+106-(-4)=+10

  • Cuando la secuencia es de menos y más o de más y menos el resultado será negativo.
    6+(4)=+26+(-4)=+2
    6(+4)=+26-(+4)=+2

Temas sugeridos para practicar con anticipación

  1. Números opuestos
  2. Eliminación de paréntesis en números reales
  3. Números positivos, negativos y el cero
  4. La recta real o La recta numérica

Practicar Suma y resta de números dirigidos

Ejercicio #1

a es número positivo

b es un número negativo

¿La suma de b+a es un número?

Solución Paso a Paso

Ilustraremos con un ejemplo:

Supongamos que a es 1 y b es -2

 

1+ (-2) = 
1-2 = -1

Respuesta: Negativo

 

Ahora definimos que a es 2

y b es -1

2+(-1) = 
2-1 = 1

Aunque la operación sea negativa, el número sigue siendo positivo.

Es decir, si el valor absoluto del número positivo (a) es mayor que el del negativo (b), el resultado seguirá siendo positivo.

Como no tenemos datos sobre esta información, es imposible saber cuál será la suma de a+b.

Respuesta

Imposible saber

Ejercicio #2

a número positivo

b número negativo

¿La suma de a+b es un número?

Solución Paso a Paso

Probaremos esto a través de experimentos:

 Supongamos que el valor del número positivo es mayor que el valor del número negativo 1 y 2.

1+(-2) = -1

El resultado es negativo.

Intentaremos que el valor del segundo número sea mayor que el primero 2 y 1.

2+(-1)= 1

El resultado es positivo.

Es decir, podemos ver que el resultado depende de los valores de los dos números, por lo que no podemos saber desde el principio cuál será el resultado.

Respuesta

Imposible saber

Ejercicio #3

a , b son números negativos

Por lo tanto a-b ¿Es un número?

Solución Paso a Paso

Probamos usando un ejemplo:

Definimos que

a = -1

b = -2

 

Ahora reemplazamos en el ejercicio:

-1-(-2) = -1+2 = 1

¡En este caso el resultado es positivo!

 

Probamos el caso contrario, donde b es mayor que a

Definimos que

a = -2

b = -1

 

-2-(-1) = -2+1 = -1

 

¡En este caso el resultado es negativo!

 

Por lo tanto, la solución correcta a toda la pregunta es: "Es imposible saber".

Respuesta

Imposible saber

Ejercicio #4

a es un número negativo

b es número positivo

Por lo tanto a-b ¿Es un número?

Solución Paso a Paso

Probamos usando un ejemplo:

Definimos que

a = -1

b = 2

Ahora reemplazamos en el ejercicio:

-1-(2) = -1-2 = -3

¡En este caso el resultado es negativo!

 

Probamos un caso donde el valor de b es menor que a

Definimos que

a = -2

b = 1

 

-2-(1) = -2-1 = -3

 

En este caso el resultado vuelve a ser negativo.

Dado que no es posible producir un caso en el que a sea mayor que b (porque un número negativo siempre es menor que un número positivo),

El resultado siempre será el mismo: "negativo", ¡y esa es la solución!

Respuesta

Negativo

Ejercicio #5

Dados dos números, se sabe que su suma es positiva.

por lo tanto, necesariamente los dos números son?

Solución Paso a Paso

Probar a través de intentos:

 

Supongamos que ambos números son positivos: 1 y 2.

1+2 = 3

Resultado positivo.

 

Supongamos que ambos números son negativos -1 y -2

-1+(-2) = -3

Resultado negativo.

 

Supongamos que un número es positivo y otro negativo: 1 y -2.

1+(-2) = -1

Resultado negativo.

Probaremos una situación en la que el valor del primer número sea mayor que el segundo: -1 y 2.

2+(-1) = 1

Resultado positivo.

 

Es decir, podemos ver que cuando ambos números son positivos, o en ciertos tipos de casos cuando un número es positivo y otro negativo, la suma es positiva.

Respuesta

Respuestas a+c correctas

Ejercicio #1

27(7)+(6)+211= -27-(-7)+(-6)+2-11=

Solución en video

Solución Paso a Paso

Primero, resolvemos el ejercicio de multiplicación, es decir donde hay un signo más o menos antes de otro signo.

27+76+211= -27+7-6+2-11=

Ahora resolvemos como un ejercicio común de izquierda a derecha:

27+7=20 -27+7=-20

206=26 -20-6=-26

26+2=24 -26+2=-24

2411=35 -24-11=-35

Respuesta

35 -35

Ejercicio #2

(+6)(+11)= (+6)-(+11)=

Solución en video

Respuesta

5 -5

Ejercicio #3

14(3)= 14-(-3)=

Solución en video

Respuesta

17 17

Ejercicio #4

(2)+3= (-2)+3=

-6-6-6-5-5-5-4-4-4-3-3-3-2-2-2-1-1-1000111222333444555666

Solución en video

Respuesta

1 1

Ejercicio #5

3+(4)= 3+(-4)=

-7-7-7-6-6-6-5-5-5-4-4-4-3-3-3-2-2-2-1-1-1000111222333444555777666

Solución en video

Respuesta

1 -1

Ejercicio #1

(+8)+(+12)= (+8)+(+12)=

Solución en video

Respuesta

20 20

Ejercicio #2

(8)(13)= (-8)-(-13)=

Solución en video

Respuesta

5 5

Ejercicio #3

(10)(+13)= (-10)-(+13)=

Solución en video

Respuesta

23 -23

Ejercicio #4

5(2)= -5-(-2)=

-7-7-7-6-6-6-5-5-5-4-4-4-3-3-3-2-2-2-1-1-1000111222333444555666777

Solución en video

Respuesta

3 -3

Ejercicio #5

3(2)= 3-(-2)=

-7-7-7-6-6-6-5-5-5-4-4-4-3-3-3-2-2-2-1-1-1000111222333444555777666

Solución en video

Respuesta

5 5

Temas que se aprenden en secciones posteriores

  1. Multiplicación y división de números reales
  2. Números enteros