Ejemplos, ejercicios y soluciones de factorización de fracciones algebraicas para niños

¿Quieres aprender a factorizar fracciones algebraicas paso a paso?

¡Lo primordial en el estudio de las matem'aticas, como ya lo sabes, es la práctica!
En esta página encontrarás más de 5 ejemplos y ejercicios con soluciones sobre la factorización de fracciones algebraicas para que puedas practicar por tu cuenta y profundizar tus conocimientos.

🏆Ejercicios de factorización y fracciones algebraicas

¿Por qué es importante que practiques cómo se hace la factorización de fracciones?

Incluso si ya aprendimos a factorizar y estamos seguros de haber entendido el asunto en general, ¡es fundamental que intentes resolver ejercicios por tu cuenta!
Vale la pena experimentar tantos tipos de preguntas como sea posible y analizar la mayor cantidad de ejemplos sobre la factorización de fracciones algebraicas para niños.
Solo practicando y resolviendo un amplio número de preguntas y ejercicios con factorización de fracciones para niños, podrás asimilar a fondo el tema y adquirirás las herramientas necesarias para enfrentar cualquier desafío por tus propios medios.

Preguntas básicas

Ejemplos y ejercicios con soluciones de factorización

Ejercicio #1

Determine si la simplificación aquí descrita es verdadera o falsa:

6363=1 \frac{6\cdot3}{6\cdot3}=1

Solución

Simplificamos la expresión del lado izquierdo de la igualdad aproximada:

=?11=!1 \frac{\textcolor{red}{\not{6}}\cdot\textcolor{blue}{\not{3}}}{\textcolor{red}{\not{6}}\cdot\textcolor{blue}{\not{3}}}\stackrel{?}{= }1\\ \downarrow\\ 1\stackrel{!}{= }1 por lo tanto, la reducción descrita es correcta.

Por lo tanto, la respuesta correcta es la opción A.

Respuesta

Verdadera

Ejercicio #2

Complete la expresión correspondiente para el denominador

16ab?=8a \frac{16ab}{?}=8a

Solución

Utilizamos la fórmula:

xy=zwxy=zy \frac{x}{y}=\frac{z}{w}\xrightarrow{}x\cdot y=z\cdot y

Convertimos el 8 en fracción, y multiplicamos

16ab?=81 \frac{16ab}{?}=\frac{8}{1}

16ab×1=8a 16ab\times1=8a

16ab=8a 16ab=8a

Dividimos ambos lados por 8a:

16ab8a=8a8a \frac{16ab}{8a}=\frac{8a}{8a}

2b 2b

Respuesta

2b 2b

Ejercicio #3

Determina si la simplificación aquí descrita es verdadera o falsa:

3xx+3=0 \frac{3-x}{-x+3}=0

Solución

zxx+z=1 \frac{z-x}{-x+z}=1

Respuesta

Falso

Ejercicio #4

Determina si la simplificación aquí descrita es verdadera o falsa:

3483=12 \frac{3\cdot4}{8\cdot3}=\frac{1}{2}

Solución

Simplificamos la expresión en el lado izquierdo de la igualdad aproximada,

Primero tengamos en cuenta el hecho de que el número 8 es múltiplo del número 4:

8=24 8=2\cdot4 Por lo tanto volveremos al problema en cuestión y presentaremos el número 8 como múltiplo del número 4, posteriormente simplificaremos la fracción:

3483=?1234243=?122=?1212=!12 \frac{3\cdot4}{\underline{8}\cdot3}\stackrel{?}{= }\frac{1}{2}\\ \downarrow\\ \frac{3\cdot4}{\underline{2\cdot4}\cdot3}\stackrel{?}{= }\frac{1}{2}\\ \downarrow\\ \frac{\textcolor{blue}{\not{3}}\cdot\textcolor{red}{\not{4}}}{2\cdot\textcolor{red}{\not{4}}\cdot\textcolor{blue}{\not{3}}}\stackrel{?}{= }\frac{1}{2} \\ \downarrow\\ \frac{1}{2}\stackrel{!}{= }\frac{1}{2} Por lo tanto la simplificación descrita es correcta.

Es decir, la respuesta correcta es la opción A.

Respuesta

Verdadero

Ejercicio #5

x21010=0 \frac{x^2}{10}-10=0

Solución

Resolveremos la ecuación dada:x21010=0 \frac{x^2}{10}-10=0 Se deduce del hecho de que nos desharemos de la fracción en el lado izquierdo de la ecuación dada, lo haremos multiplicando ambos lados de la ecuación por el denominador común, que es el número 10, luego transferimos el número libre a un lado, recordando que cuando transferimos un término a la otra sección, el signo del coeficiente cambia:

x210101=0/101x21010=0x2100=0x2=100 \frac{x^2}{10}-\frac{10}{1}=0\hspace{8pt}\text{/}\cdot 10\\ \\ 1\cdot x^2-10\cdot10=0 \\ x^2-100=0\\ x^2=100 A partir de aquí resolveremos de forma sencilla, realizaremos en ambos lados la operación contraria a la operación de la potencia cuadrática aplicada a la incógnita que en la ecuación, es la operación de la raíz de segundo orden, con la ayuda de un número de las leyes de potencia:

A. Definición de la raíz como potencia:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}} y en las dos leyes de potenciación:

B. Ley de potencias para exponente elevado a otro exponente:

(am)n=amn (a^m)^n=a^{m\cdot n}

Continuamos resolviendo la ecuación:
x2=100/x2=±100(x2)12=±10x212=±10x=10,10 x^2=100\hspace{8pt}\text{/}\sqrt{\hspace{6pt}}\\ \sqrt{ x^2}=\pm\sqrt{ 100}\\ (x^2)^{\frac{1}{2}}=\pm10\\ x^{2\cdot\frac{1}{2}}=\pm10\\ \boxed{x=10,-10}

En el primer paso aplicamos la raíz cuadrada a ambos lados de la ecuación, posteriormente recordamos la definición de la raíz como potencia (a) en el lado izquierdo, en el siguiente paso aplicamos la ley de las potenciación de un exponente elevado a otro exponente (b) del lado izquierdo, y recordamos que elevar un número a la 1ª potencia no cambia el número.

Además, recordemos que dado que una potencia de orden par no conserva el signo del número al que se aplica la potencia (siempre dará un resultado positivo), extraer una raíz de orden par para los lados de la ecuación requiere referencia a dos casos posibles: positivo y negativo (esto contrasta con la extracción de una raíz de orden impar, que requiere referencia a un solo caso en el signo de número en el que se aplica la raíz),

Resumamos la solución de la ecuación:

x21010=0/10x2=100/x=10,10 \frac{x^2}{10}-10=0 \hspace{8pt}\text{/}\cdot 10\\ x^2=100 \hspace{8pt}\text{/}\sqrt{\hspace{6pt}}\\ \boxed{x=10,-10}

Por lo tanto, la respuesta correcta es la opción a.

Respuesta

x=±10 x=\pm10

¿Cuántos ejercicios y ejemplos de factorización es necesario realizar?

La cantidad de ejercicios y ejemplos de factorización de fracciones para niños que debemos practicar, varía de persona en persona.
En general, recomendamos resolver muchas pruebas y observar varios ejemplos para que, en total, estos cubran la mayor cantidad de tipos de ejercicios posibles.
Cuanto más ejercites cómo se hace la factorización de fracciones para niños, comprenderás el tema más profundamente y aumentará la probabilidad de que te vaya bien y que tengas éxito.

Las preguntas más nuevas