Multiplicación y división de fracciones algebraicas - Ejemplos, Ejercicios y Soluciones

Entendiendo la Multiplicación y división de fracciones algebraicas

Explicación completa con ejemplos

Operaciones de multiplicación y división en fracciones algebraicas

Cuando queramos multiplicar o dividir fracciones algebraicas utilizaremos las mismas herramientas que usamos para la multiplicación o división de fracciones comunes con algunas pequeñas diferencias.

Pasos por llevar a cabo para la multiplicación de fracciones algebraicas 1 1 :

  • Intentemos extraer el factor común.
    Éste puede ser la incógnita o bien cualquier número libre.
  • Si esto no alcanzara, factorizaremos con fórmulas de multiplicación abreviada o con trinomios.
  • Encontremos el conjunto solución.
    • ¿Cómo se halla el conjunto solución?
      Haremos que todos los denominadores que tenemos equivalgan a 0 0 y hallaremos la solución.
      El conjunto solución será X X : distinto de lo que causa que nuestro denominador equivalga a cero.
  • Simplifiquemos con determinación las fracciones.
  • Multipliquemos numerador por numerador y denominador por denominador como en cualquier fracción.
Explicación completa

Practicar Multiplicación y división de fracciones algebraicas

Pon a prueba tus conocimientos con más de 19 cuestionarios

Complete la expresión correspondiente para el denominador

\( \frac{19ab}{?}=a \)

ejemplos con soluciones para Multiplicación y división de fracciones algebraicas

Soluciones paso a paso incluidas
Ejercicio #1

Complete la expresión correspondiente para el denominador

16ab?=8a \frac{16ab}{?}=8a

Solución Paso a Paso

Utilizamos la fórmula:

xy=zwxy=zy \frac{x}{y}=\frac{z}{w}\xrightarrow{}x\cdot y=z\cdot y

Convertimos el 8 en fracción, y multiplicamos

16ab?=81 \frac{16ab}{?}=\frac{8}{1}

16ab×1=8a 16ab\times1=8a

16ab=8a 16ab=8a

Dividimos ambos lados por 8a:

16ab8a=8a8a \frac{16ab}{8a}=\frac{8a}{8a}

2b 2b

Respuesta:

2b 2b

Solución en video
Ejercicio #2

Determine si la simplificación aquí descrita es verdadera o falsa:

6363=1 \frac{6\cdot3}{6\cdot3}=1

Solución Paso a Paso

Simplificamos la expresión del lado izquierdo de la igualdad aproximada:

=?11=!1 \frac{\textcolor{red}{\not{6}}\cdot\textcolor{blue}{\not{3}}}{\textcolor{red}{\not{6}}\cdot\textcolor{blue}{\not{3}}}\stackrel{?}{= }1\\ \downarrow\\ 1\stackrel{!}{= }1 por lo tanto, la reducción descrita es correcta.

Por lo tanto, la respuesta correcta es la opción A.

Respuesta:

Verdadera

Solución en video
Ejercicio #3

Determine si la simplificación descrita aquí es verdadera o falsa:

3773=0 \frac{3\cdot7}{7\cdot3}=0

Solución Paso a Paso

Dividiremos el ejercicio de fracciones en dos ejercicios de multiplicación diferentes,
Como este es un ejercicio de multiplicación, puedes usar la propiedad sustitutiva:

77×33=1×1=1 \frac{7}{7}\times\frac{3}{3}=1\times1=1

Por lo tanto, la simplificación descrita es falsa.

Respuesta:

Falsa

Solución en video
Ejercicio #4

Determine si la simplificación descrita aquí es verdadera o falsa:

484=18 \frac{4\cdot8}{4}=\frac{1}{8}

Solución Paso a Paso

Dividiremos el ejercicio de fracciones en dos ejercicios de multiplicación:

44×81= \frac{4}{4}\times\frac{8}{1}=

Simplificamos:

1×81=8 1\times\frac{8}{1}=8

Por lo tanto, la simplificación descrita es falsa.

Respuesta:

Falsa

Solución en video
Ejercicio #5

Determine si la simplificación descrita aquí es verdadera o falsa:

5883=53 \frac{5\cdot8}{8\cdot3}=\frac{5}{3}

Solución Paso a Paso

Consideremos la fracción y descompongámosla en dos ejercicios de multiplicación:

88×53 \frac{8}{8}\times\frac{5}{3}

Simplificamos:

1×53=53 1\times\frac{5}{3}=\frac{5}{3}

Respuesta:

Verdadera

Solución en video

Continúa tu viaje matemático