Ejercicios Perpendicular a la Cuerda desde el Centro

Practica problemas sobre perpendiculares del centro a la cuerda. Incluye ejercicios resueltos paso a paso con ángulos centrales, arcos y bisección de cuerdas.

📚Practica las Propiedades de la Perpendicular desde el Centro
  • Aplicar la propiedad de bisección de cuerdas por perpendiculares del centro
  • Calcular ángulos centrales utilizando la propiedad de bisección angular
  • Determinar longitudes de arcos usando perpendiculares desde el centro
  • Resolver problemas que combinan cuerdas, ángulos centrales y arcos
  • Demostrar que una línea es perpendicular usando las propiedades del círculo
  • Aplicar el teorema inverso para identificar perpendiculares del centro

Entendiendo la Perpendicular a la cuerda desde el centro del círculo

Explicación completa con ejemplos

La perpendicular a la cuerda que sale del centro del círculo, intersecando la cuerda, el ángulo central por delante de la cuerda y el arco por delante de la cuerda.
Además, Si hay una sección que sale del centro del círculo y cruza la cuerda, también será perpendicular a la cuerda.

Estamos aquí para presentarles las propiedades de la perpendicular desde el centro del círculo hasta la cuerda.
Primero recordaremos que la perpendicular es una línea que forma un ángulo de 90° 90° grados.
Veámoslo en la ilustración:

nuevo - Perpendicular a la cuerda desde el centro del círculo

Frente a nosotros hay un círculo.
Marcaremos el centro del círculo con una letra  AA
Nuestra cuerda será azul y se denominará BCBC.
La vertical, que sale del centro del círculo y será perpendicular a la cuerda BCBC.
Lo marcaremos en rojo y lo denominaremos ADAD.

Explicación completa

Practicar Perpendicular a la cuerda desde el centro del círculo

Pon a prueba tus conocimientos con más de 6 cuestionarios

Calcula la longitud del arco pintado en rojo. Se sabe que la circunferencia es 18.

260°260°260°

ejemplos con soluciones para Perpendicular a la cuerda desde el centro del círculo

Soluciones paso a paso incluidas
Ejercicio #1

Dado un círculo cuya ecuación es:
x28ax+y2+10ay=5a2 x^2-8ax+y^2+10ay=-5a^2

El punto O es su centro y está en el segundo cuadrante (a0 a\neq0 )


Usa el método de completar el cuadrado para encontrar el centro del círculo y su radio en términos de a a .

Solución Paso a Paso

 Recordemos que la ecuación de un círculo con su centro en O(xo,yo) O(x_o,y_o) y su radio R R es:

(xxo)2+(yyo)2=R2 (x-x_o)^2+(y-y_o)^2=R^2 Ahora, veamos la ecuación del círculo dado:

x28ax+y2+10ay=5a2 x^2-8ax+y^2+10ay=-5a^2
Intentaremos reorganizar esta ecuación para que coincida con la ecuación del círculo, o en otras palabras, nos aseguraremos de que en el lado izquierdo esté la suma de dos expresiones binomiales al cuadrado, una para x y otra para y.

Haremos esto utilizando el método de "completar el cuadrado":

Recordemos la fórmula corta para elevar un binomio al cuadrado:

(c±d)2=c2±2cd+d2 (c\pm d)^2=c^2\pm2cd+d^2 Trataremos por separado la parte de la ecuación relacionada con x en la ecuación (subrayada):

x28ax+y2+10ay=5a2 \underline{ x^2-8ax}+y^2+10ay=-5a^2

Aislaremos estos dos términos de la ecuación y los trataremos por separado.

Presentaremos estos términos en una forma similar a la forma de los dos primeros términos en la fórmula abreviada (elegiremos la forma de resta de la fórmula del binomio al cuadrado ya que el término en la primera potencia con el que estamos tratando es8ax 8ax , que tiene un signo negativo):

x28axc22cd+d2x22x4ac22cd+d2 \underline{ x^2-8ax} \textcolor{blue}{\leftrightarrow} \underline{ c^2-2cd+d^2 }\\ \downarrow\\ \underline{\textcolor{red}{x}^2\stackrel{\downarrow}{-2 }\cdot \textcolor{red}{x}\cdot \textcolor{green}{4a}} \textcolor{blue}{\leftrightarrow} \underline{ \textcolor{red}{c}^2\stackrel{\downarrow}{-2 }\textcolor{red}{c}\textcolor{green}{d}\hspace{2pt}\boxed{+\textcolor{green}{d}^2}} \\ Observa que en comparación con la fórmula corta (que está en el lado derecho de la flecha azul en el cálculo anterior), en realidad estamos haciendo la comparación:

{xc4ad \begin{cases} x\textcolor{blue}{\leftrightarrow}c\\ 4a\textcolor{blue}{\leftrightarrow}d \end{cases} Por lo tanto, si queremos obtener una forma de binomio al cuadrado de estos dos términos (subrayados en el cálculo), necesitaremos agregar el término(4</span><spanclass="katex">a)2 (4</span><span class="katex">a)^2 , pero no queremos cambiar el valor de la expresión, y por lo tanto también restaremos este término de la expresión.

Es decir, agregaremos y restaremos el término (o expresión) que necesitamos para "completar" la forma del binomio al cuadrado,

En el siguiente cálculo, el "truco" está resaltado (dos líneas bajo el término que agregamos y restamos de la expresión),

A continuación, pondremos la expresión en la forma de binomio al cuadrado la expresión apropiada (resaltada con colores) y en la última etapa simplificaremos la expresión:

x22x4ax22x4a+(4a)2(4a)2x22x4a+(4a)216a2(x4a)216a2 x^2-2\cdot x\cdot 4a\\ x^2-2\cdot x\cdot4a\underline{\underline{+(4a)^2-(4a)^2}}\\ \textcolor{red}{x}^2-2\cdot \textcolor{red}{x}\cdot \textcolor{green}{4a}+(\textcolor{green}{4a})^2-16a^2\\ \downarrow\\ \boxed{ (\textcolor{red}{x}-\textcolor{green}{4a})^2-16a^2}\\ Resumamos los pasos que hemos dado hasta ahora para la expresión con x.

Haremos esto dentro de la ecuación dada:

x28ax+y2+10ay=5a2x22x4a+(4a)2(4a)2+y2+10ay=5a2(x4a)216a2+y2+10ay=5a2 x^2-8ax+y^2+10ay=-5a^2 \\ \textcolor{red}{x}^2-2\cdot \textcolor{red}{x}\cdot\textcolor{green}{4a}\underline{\underline{+\textcolor{green}{(4a)}^2-(4a)^2}}+y^2+10ay=-5a^2\\ \downarrow\\ (\textcolor{red}{x}-\textcolor{green}{4a})^2-16a^2+y^2+10ay=-5a^2\\ Continuaremos y haremos lo mismo para las expresiones con y en la ecuación resultante:

(Ahora elegiremos la forma de adición de la fórmula del binomio al cuadrado ya que el término en la primera potencia con el que estamos tratando 10ay 10ay tiene un signo positivo)

(x4a)216a2+y2+10ay=5a2(x4a)216a2+y2+2y5a=5a2(x4a)216a2+y2+2y5a+(5a)2(5a)2=5a2(x4a)216a2+y2+2y5a+(5a)225a2=5a2(x4a)216a2+(y+5a)225a2=5a2(x4a)2+(y+5a)2=36a2 (x-4a)^2-16a^2+\underline{y^2+10ay}=-5a^2\\ \downarrow\\ (x-4a)^2-16a^2+\underline{y^2+2\cdot y \cdot 5a}=-5a^2\\ (x-4a)^2-16a^2+\underline{y^2+2\cdot y \cdot 5a\underline{\underline{+(5a)^2-(5a)^2}}}=-5a^2\\ \downarrow\\ (x-4a)^2-16a^2+\underline{\textcolor{red}{y}^2+2\cdot\textcolor{red}{ y}\cdot \textcolor{green}{5a}+\textcolor{green}{(5a)}^2-25a^2}=-5a^2\\ \downarrow\\ (x-4a)^2-16a^2+(\textcolor{red}{y}+\textcolor{green}{5a})^2-25a^2=-5a^2\\ \boxed{(x-4a)^2+(y+5a)^2=36a^2} En el último paso, movemos los números libres al segundo lado y combinamos términos semejantes.

Ahora que la ecuación del círculo dado está en la forma de la ecuación general del círculo mencionada anteriormente, podemos extraer fácilmente tanto el centro del círculo dado como su radio:

(xxo)2+(yyo)2=R2(x4a)2+(y+5a)2=36a2(x4a)2+(y(5a))2=36a2 (x-\textcolor{purple}{x_o})^2+(y-\textcolor{orange}{y_o})^2=\underline{\underline{R^2}} \\ \updownarrow \\ (x-\textcolor{purple}{4a})^2+(y+\textcolor{orange}{5a})^2=\underline{\underline{36a^2}}\\ \downarrow\\ (x-\textcolor{purple}{4a})^2+(y\stackrel{\downarrow}{- }(-\textcolor{orange}{5a}))^2=\underline{\underline{36a^2}}\\

En el último paso, nos aseguramos de obtener la forma exacta de la ecuación general del círculo, es decir, donde solo se realiza resta dentro de las expresiones al cuadrado (enfatizado con una flecha)

Por lo tanto, podemos concluir que el centro del círculo está en:O(xo,yo)O(4a,5a) \boxed{O(x_o,y_o)\leftrightarrow O(4a,-5a)} y extraer el radio del círculo resolviendo una ecuación simple:

R2=36a2/R=±6a R^2=36a^2\hspace{6pt}\text{/}\sqrt{\hspace{4pt}}\\ \rightarrow \boxed{R=\pm6a}

Recuerda que el radio del círculo, por su definición, es la distancia entre cualquier punto del diámetro y el centro del círculo. Como es positivo, debemos descalificar una de las opciones que obtuvimos para el radio.

Para hacer esto, utilizaremos la información restante que no hemos usado aún, que es que el centro del círculo dado O está en el segundo cuadrante.

Es decir:

O(x_o,y_o)\leftrightarrow x_o<0,\hspace{4pt}y_o>0 (O en palabras: el valor de x del centro del círculo es negativo y el valor de y del centro del círculo es positivo)

Por lo tanto, debe ser cierto que:

\begin{cases} x_o<0\rightarrow (x_o=4a)\rightarrow 4a<0\rightarrow\boxed{a<0}\\ y_o>0\rightarrow (y_o=-5a)\rightarrow -5a>0\rightarrow\boxed{a<0} \end{cases}

Concluimos que a<0 y como el radio del círculo es positivo, concluimos que necesariamente:

R=6a \rightarrow \boxed{R=-6a} Resumamos:

O(4a,5a),R=6a \boxed{O(4a,-5a), \hspace{4pt}R=-6a} Por lo tanto, la respuesta correcta es la opción d. 

Respuesta:

O(4a,5a),R=6a O(4a,-5a),\hspace{4pt}R=-6a

Ejercicio #2

¿En cuál de los círculos el segmento trazado es el radio?

Solución Paso a Paso

Respuesta:

Solución en video
Ejercicio #3

¿En cuál de los círculos está el punto marcado en el círculo y no sobre la circunferencia?

Solución Paso a Paso

Respuesta:

Solución en video
Ejercicio #4

Calcula la longitud del arco pintado en rojo. Sabiendo que la circunferencia es 36.

20

Solución Paso a Paso

Respuesta:

2

Solución en video
Ejercicio #5

¿Cuántas veces mayor es la longitud del radio del círculo rojo que la longitud del radio del círculo azul?

220

Solución Paso a Paso

Respuesta:

5

Solución en video

Preguntas Frecuentes

¿Qué es una perpendicular a la cuerda desde el centro del círculo?

+
Es una línea recta que sale del centro del círculo y forma un ángulo de 90° con la cuerda. Esta perpendicular tiene tres propiedades fundamentales: biseca la cuerda, biseca el ángulo central y biseca el arco correspondiente.

¿Cuáles son las tres propiedades principales de la perpendicular del centro a la cuerda?

+
Las tres propiedades son: 1) Biseca la cuerda (divide en dos partes iguales), 2) Biseca el ángulo central frente a la cuerda, 3) Biseca el arco que se encuentra frente a la cuerda.

¿Cómo se demuestra que una perpendicular desde el centro biseca una cuerda?

+
Si AD es perpendicular a la cuerda BC desde el centro A, entonces BD = DC. Esto se puede demostrar usando triángulos congruentes formados por los radios AB y AC junto con la perpendicular AD.

¿Es cierto que si una línea del centro biseca una cuerda, entonces es perpendicular?

+
Sí, es cierto. Esta es la propiedad inversa: si una línea que sale del centro del círculo biseca una cuerda, entonces esa línea es perpendicular a la cuerda. También bisecará el ángulo central y el arco correspondiente.

¿Cómo calcular el ángulo central cuando se conoce la perpendicular del centro?

+
Si la perpendicular del centro biseca el ángulo central, entonces cada mitad tendrá la misma medida. Si el ángulo central completo mide α, cada parte medirá α/2 grados.

¿Qué aplicaciones prácticas tienen las perpendiculares del centro a las cuerdas?

+
Se usan en: construcción de arcos arquitectónicos, diseño de ruedas y engranajes, cálculos en astronomía para órbitas circulares, y en geometría computacional para encontrar centros de círculos.

¿Cómo se relaciona la distancia del centro a la cuerda con la perpendicular?

+
La distancia más corta del centro a cualquier cuerda siempre es la perpendicular. Esta distancia, junto con el radio, forma un triángulo rectángulo que permite calcular longitudes de cuerdas usando el teorema de Pitágoras.

¿Qué errores comunes se cometen al trabajar con perpendiculares del centro?

+
Los errores más frecuentes incluyen: confundir la cuerda con el arco, no verificar que la línea sea perpendicular (90°), y olvidar aplicar todas las tres propiedades simultáneamente en los problemas.

Continúa tu viaje matemático

Practica por Tipo de Pregunta