Ejemplos, ejercicios y soluciones del cálculo del radio a partir de la circunferencia

¿Quieres aprender cómo se calcula el radio mediante su circunferencia?

¡Lo primordial en el estudio de las matemáticas, como ya lo sabes, es la práctica!
En esta página encontrarás más de 5 ejemplos y ejercicios con soluciones que muestran cómo calcular el radio usando la circunferencia para que puedas practicar por tu cuenta y profundizar tus conocimientos.

🏆Ejercicios de circunferencia

¿Por qué es importante que practiques a calcular el radio a partir de la circunferencia?

Incluso si ya sabemos cómo hallar en radio y estamos seguros de haber entendido el asunto en general, ¡es fundamental que intentes resolver ejercicios por tu cuenta!
Vale la pena experimentar tantos tipos de preguntas como sea posible y analizar la mayor cantidad de ejemplos sobre la determinación del radio usando la circunferencia.
Solo practicando y resolviendo un amplio número de preguntas y ejercicios que pidan hallar el radio mediante la circunferencia, podrás asimilar a fondo el tema y adquirirás las herramientas necesarias para enfrentar cualquier desafío por tus propios medios.

Preguntas básicas

Ejemplos y ejercicios con soluciones para niños sobre cómo determinar el radio desde la circunferencia

Ejercicio #1

Dado el círculo de la figura,
su centro es el punto O

888OOO ¿Cuál es la circunferencia?

Solución

Utilizamos la fórmula:P=2πr P=2\pi r

Reemplazamos los datos en la fórmula:P=2×8π P=2\times8\pi

P=16π P=16\pi

Respuesta

16π 16\pi cm

Ejercicio #2

Dado el círculo de la figura:

444

El radio es igual a 4,

¿Cuál es su circunferencia?

Solución

La fórmula de la circunferencia es igual a:

2πr 2\pi r

Respuesta

Ejercicio #3

Dado el círculo de la figura.

Dado el radio que es igual a 6, ¿cuál es su circunferencia?

6

Solución

Fórmula de la circunferencia:

P=2πr P=2\pi r

Reemplazamos los datos en la fórmula:

P=2×6×π P=2\times6\times\pi

P=12π P=12\pi

Respuesta

12π 12\pi

Ejercicio #4

Dado un círculo cuya circunferencia es 31.41,

¿Cuál es el radio?

Solución

Para resolver el ejercicio, primero deberemos recordar la fórmula de la circunferencia

P=2πR P= 2\pi R

Cuando P es la circunferencia y Pi tiene un valor de 3.14 (aproximadamente)

Reemplazamos los datos conocidos:

31.41=23.141R 31.41=2\cdot3.141\cdot R Tengamos en cuenta que el resultado se puede simplificar fácilmente mediante Pi, por lo tanto

31.413.141=2R \frac{31.41}{3.141}=2R

10=2R 10=2R

Simplificamos por 2:

5=R 5=R ¡Esta es la solución!

Respuesta

5

Ejercicio #5

Dado un círculo cuya circunferencia es 50.25

¿Cuál es el radio?

Solución

Utilizamos la fórmula:

P=2πr P=2\pi r

Reemplazamos los datos en la fórmula:

50.25=3.14×2r 50.25=3.14\times2r

50.25=2×r×3.14 50.25=2\times r\times3.14

50.25=6.28r 50.25=6.28r

50.256.28=6.28r6.28 \frac{50.25}{6.28}=\frac{6.28r}{6.28}

r=8 r=8

Respuesta

8

Ejercicio #6

Dado que la circunferencia es igual a 14

¿Cuál es el largo del radio del círculo?

Solución

Utilizamos en la fórmula:

P=2πr P=2\pi r

Reemplazamos los datos en la fórmula:

14=2×π×r 14=2\times\pi\times r

Dividimos Pi por 2:

142π=2πr2π \frac{14}{2\pi}=\frac{2\pi r}{2\pi}

7π=r \frac{7}{\pi}=r

Respuesta

7π \frac{7}{\pi}

Ejercicio #7

A continuación hay un círculo delimitado por un paralelogramo:

36

Todos los puntos de encuentro son tangentes al círculo.
La circunferencia es 25.13.

¿Cuál es el área del paralelogramo?

Solución

Primero, agregamos letras como puntos de referencia:

Observemos los puntos A y B.

Sabemos que dos rectas tangentes a una circunferencia y que parten del mismo punto son paralelas entre sí.

Por lo tanto:

AE=AF=3 AE=AF=3
BG=BF=6 BG=BF=6

Y desde aquí podemos calcular:

AB=AF+FB=3+6=9 AB=AF+FB=3+6=9

Ahora necesitamos la altura del paralelogramo.

Sabemos que F es tangente al círculo, por lo que el diámetro que sale del punto F también será la altura del paralelogramo.

También se sabe que el diámetro es igual a dos radios.

Dado que la circunferencia es 25,13.

Fórmula de circunferencia:2πR 2\pi R
Reemplazamos y resolvemos:

2πR=25.13 2\pi R=25.13
πR=12.565 \pi R=12.565
R4 R\approx4

La altura del paralelogramo es igual a dos radios, es decir, 8.

Y desde aquí puedes calcular con una fórmula de área del paralelogramo:

AlturaXLado AlturaXLado

9×872 9\times8\approx72

Respuesta

72 \approx72

Ejercicio #8

Dado un paralelogramo delimitado por un círculo:

36

Todos los puntos de encuentro son tangentes al círculo.
La circunferencia es 25.13.

¿Cuál es el área de las zonas marcadas en azul?

Solución

Primero, agregamos letras como puntos de referencia:

Observemos los puntos A y B.

Sabemos que dos rectas tangentes a una circunferencia y que parten del mismo punto son paralelas entre sí.

Por lo tanto:

AE=AF=3 AE=AF=3
BG=BF=6 BG=BF=6

Desde aquí podemos calcular:

AB=AF+FB=3+6=9 AB=AF+FB=3+6=9

Ahora necesitamos la altura del paralelogramo.

Sabemos que F es tangente al círculo, por lo que el diámetro que sale del punto F también será la altura del paralelogramo.

También se sabe que el diámetro es igual a dos radios.

Se sabe que la circunferencia del círculo es 25,13.

Fórmula de la circunferencia:2πR 2\pi R
Reemplazamos y resolvemos:

2πR=25.13 2\pi R=25.13
πR=12.565 \pi R=12.565
R4 R\approx4

La altura del paralelogramo es igual a dos radios, es decir, 8.

Y desde aquí es posible calcular el área del paralelogramo:

Lado x Altura \text{Lado }x\text{ Altura} 9×872 9\times8\approx72

Ahora, calculamos el área del círculo según la fórmula:πR2 \pi R^2

π42=50.26 \pi4^2=50.26

Ahora, resta el área del círculo de la superficie del trapecio para obtener la respuesta:

7256.2421.73 72-56.24\approx21.73

Respuesta

21.73 \approx21.73

¿Cuántos ejercicios y ejemplos de cálculo del radio a partir de la circunferencia es necesario realizar?

La cantidad de ejercicios y ejemplos para encontrar el radio a partir de la circunferencia que debemos practicar, varía de persona en persona.
En general, recomendamos resolver muchas pruebas y observar varios ejemplos para que, en total, estos cubran la mayor cantidad de tipos de ejercicios posibles.
Cuanto más ejercites con el cálculo del radio usando la circunferencia, comprenderás el tema más profundamente y aumentará la probabilidad de que te vaya bien y que tengas éxito.

Las preguntas más nuevas