Jerarquía de operaciones: (potencias) - Ejemplos, Ejercicios y Soluciones

Como parte de las operaciones combinadas, aprendimos que los paréntesis ocupan siempre el primer lugar.

Una vez resueltos, podemos comenzar a simplificar potencias (o raíces).

Cuando las hayamos simplificado, podemos continuar resolviendo el ejercicio de acuerdo con el orden de las operaciones básicas :

En primer lugar, las multiplicaciones y las divisiones y, en último lugar, las sumas y las restas.

Refresquemos el orden de las operaciones:

  1. Paréntesis
  2. Potencias y raíces
  3. Multiplicaciones y divisiones
  4. Sumas y restas
  • En aquellos ejercicios en los que una operación se repita, la resolveremos de izquierda a derecha.
orden de las operaciones 1

Temas sugeridos para practicar con anticipación

  1. Jerarquía de operaciones: suma, resta, multiplicación y división

Practicar Jerarquía de operaciones: (potencias)

Ejercicio #1

¿Cuál es la respuesta del siguiente ejercicio?

32+33 3^2+3^3

Solución en video

Solución Paso a Paso

Recuerda primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que estas preceden a la suma y a la resta (y los paréntesis siempre preceden a todo).

Así que primero calcula los valores de los términos en la potencia y luego resta entre los resultados:

32+33=9+27=36 3^2+3^3 =9+27=36 Por lo tanto, la respuesta correcta es la opción B.

Respuesta

36

Ejercicio #2

¿Cuál es la respuesta del siguiente ejercicio?

3233 3^2-3^3 ?

Solución en video

Solución Paso a Paso

Recuerda primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que estas preceden a la suma y a la resta (y los paréntesis siempre preceden a todo),

Así que primero calcula los valores de los términos en la potencia y luego resta entre los resultados:

3233=927=18 3^2-3^3 =9-27=-18 Por lo tanto, la respuesta correcta es la opción A.

Respuesta

18 -18

Ejercicio #3

¿Cuál es la respuesta del siguiente ejercicio?

524+33 5^2\cdot4+3^3

Solución en video

Solución Paso a Paso

Recuerda primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que estas preceden a la suma y a la resta (y los paréntesis siempre preceden a todo).

Así que primero calcula los valores de los términos en la potencia y luego resta entre los resultados:

524+33=254+27=100+27=127 5^2\cdot4+3^3 =25\cdot4+27=100+27=127 Por lo tanto, la respuesta correcta es la opción B.

Respuesta

127

Ejercicio #4

Calcule e indique la respuesta:

(10225):32 (10^2-2\cdot5):3^2

Solución en video

Solución Paso a Paso

Recordemos primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que preceden a la suma y a la resta (y los paréntesis siempre preceden a todo),

Por lo tanto, primero calculamos el valor de la expresión dentro del paréntesis (calculando primero los valores de los términos en la potencia dentro de los paréntesis):

(10225):32=(10010):32=90:32=9032 (10^2-2\cdot5):3^2 = (100-10):3^2 =90:3^2=\frac{90}{3^2} Cuando en el segundo paso simplificamos la expresión entre paréntesis y en el siguiente paso escribimos la operación de división como una fracción,

Posteriormente realizamos la división (en realidad simplificamos la fracción):

9032=9̸0=10 \frac{90}{3^2} =\frac{\not{90}}{\not{9}}=10 Por lo tanto, la respuesta correcta es la opción D.

Respuesta

10

Ejercicio #5

Calcule e indique la respuesta:

(94)24251 (\sqrt{9}-\sqrt{4})^2\cdot4^2-5^1

Solución en video

Solución Paso a Paso

Recordemos primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y la división, que preceden a la suma y la resta (y los paréntesis siempre preceden a todo),

Entonces, primero calculamos el valor de la expresión dentro de los paréntesis (calculando primero las raíces dentro de los paréntesis):

(94)24251=(32)24251=124251 (\sqrt{9}-\sqrt{4})^2\cdot4^2-5^1 =(3-2)^2\cdot4^2-5^1 =1^2\cdot4^2-5^1 Cuando en el segundo paso simplificamos la expresión de los paréntesis,

A continuación, calculamos el valor de los términos de la potencia

124251=1165 1^2\cdot4^2-5^1 =1\cdot16-5 A continuación, calculamos el resultado de las multiplicaciones

1165=165 1\cdot16-5 =16-5 Luego, realizamos la resta:

165=11 16-5=11 Por lo tanto, la respuesta correcta es la opción B.

Respuesta

11

Ejercicio #1

¿Cuál es la respuesta del siguiente ejercicio?

442521 \sqrt{4}\cdot4^2-5^2\cdot\sqrt{1}

Solución en video

Solución Paso a Paso

Simplificamos cada término según el orden de izquierda a derecha:

4=2 \sqrt{4}=2

42=4×4=16 4^2=4\times4=16

52=5×5=25 5^2=5\times5=25

1=1 \sqrt{1}=1

Ahora ordenamos el ejercicio en consecuencia:

2×1625×1 2\times16-25\times1

Dado que hay dos ejercicios de multiplicación en el ejercicio, según el orden de las operaciones aritméticas comenzamos con ellas y luego restamos.

Ponemos los dos ejercicios de multiplicación entre paréntesis para no confundirnos durante la solución, y resolvemos de izquierda a derecha:

(2×16)(25×1)=3225=7 (2\times16)-(25\times1)=32-25=7

Respuesta

7

Ejercicio #2

Calcule e indique la respuesta:

(52)223 (5-2)^2-2^3

Solución en video

Solución Paso a Paso

Recuerda primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que estas preceden a la suma y a la resta (y los paréntesis siempre preceden a todo).

Así que primero calcula los valores de los términos en la potencia y luego resta entre los resultados:

(52)223=3223=98=1 (5-2)^2-2^3 =3^2-2^3=9-8=1 Por lo tanto, la respuesta correcta es la opción C.

Respuesta

1

Ejercicio #3

Calcule e indique la respuesta:

(1009)2:7 (\sqrt{100}-\sqrt{9})^2:7

Solución en video

Solución Paso a Paso

Recordemos primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que preceden a la suma y a la resta (y los paréntesis siempre preceden a todo),

Por lo tanto, primero calculamos el valor de la expresión dentro del paréntesis (calculando primero los valores de los términos en la potencia dentro de los paréntesis):

(1009)2:7=(103)2:7=72:7=727 (\sqrt{100}-\sqrt{9})^2:7 = (10-3)^2:7 =7^2:7=\frac{7^2}{7} Cuando en el segundo paso simplificamos la expresión entre paréntesis y en el siguiente paso escribimos la operación de división como una fracción,

A continuación, calculamos el valor del término en el numerador de la fracción realizando la multiplicación, y en el siguiente paso realizamos la división (en realidad simplificamos la fracción):

727=4̸9=7 \frac{7^2}{7} =\frac{\not{49}}{\not{7}}=7 Por lo tanto, la respuesta correcta es la opción A.

Respuesta

7

Ejercicio #4

Calcule e indique la respuesta:

5:(132122) 5:(13^2-12^2)

Solución en video

Solución Paso a Paso

Recordemos primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que preceden a la suma y a la resta (y los paréntesis siempre preceden a todo),

Por lo tanto, primero calculamos el valor de la expresión dentro del paréntesis (calculando primero los valores de los términos en la potencia dentro de los paréntesis):

5:(132122)=5:(169144)=5:25=525 5:(13^2-12^2) =5:(169-144) =5:25=\frac{5}{25}

Cuando en el segundo paso simplificamos la expresión entre paréntesis y en el siguiente paso escribimos la operación de división como una fracción,

Posteriormente realizamos la división (en realidad simplificamos la fracción):

2̸5=15 \frac{\not{5}}{\not{25}}=\frac{1}{5} Por lo tanto, la respuesta correcta es la opción C.

Respuesta

15 \frac{1}{5}

Ejercicio #5

Calcule e indique la respuesta:

(42+32):25 (4^2+3^2):\sqrt{25}

Solución en video

Solución Paso a Paso

Recordemos primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que preceden a la suma y a la resta (y los paréntesis siempre preceden a todo),

Por lo tanto, primero calculamos el valor de la expresión dentro del paréntesis (calculando primero los valores de los términos en la potencia dentro de los paréntesis):

(42+32):25=(16+9):25=25:25=2525 (4^2+3^2):\sqrt{25} =(16+9):\sqrt{25} =25:\sqrt{25} =\frac{25}{\sqrt{25}} Cuando en el segundo paso simplificamos la expresión entre paréntesis y en el siguiente paso escribimos la operación de división como una fracción,

Continuamos y calculamos el valor de la raíz en el denominador:

2525=255 \frac{25}{\sqrt{25}} =\frac{25}{5} Y luego realizamos la división (simplificando la fracción de hecho):

255=5 \frac{25}{5} =5 Por lo tanto, la respuesta correcta es la opción B.

Respuesta

5

Ejercicio #1

(380.2512)211= (\sqrt{380.25}-\frac{1}{2})^2-11=

Solución en video

Solución Paso a Paso

Según el orden de las operaciones aritméticas, resolvemos primero el ejercicio entre paréntesis:

(380.2512)=(19.512)=(19) (\sqrt{380.25}-\frac{1}{2})=(19.5-\frac{1}{2})=(19)

En el siguiente paso resolvemos el ejercicio de potencia, y finalmente restamos:

(19)211=(19×19)11=36111=350 (19)^2-11=(19\times19)-11=361-11=350

Respuesta

350

Ejercicio #2

Calcule e indique la respuesta:

(2522)3+23 (\sqrt{25}-2^2)^3+2^3

Solución en video

Solución Paso a Paso

Recordemos primero el orden de las operaciones aritméticas en las que las potencias preceden a la multiplicación y a la división, que preceden a la suma y a la resta (y los paréntesis siempre preceden a todo),

Por lo tanto, primero calculamos el valor de la expresión dentro del paréntesis (calculando primero los valores de los términos en la potencia dentro de los paréntesis):(2522)3+23=(54)3+23=13+23 (\sqrt{25}-2^2)^3+2^3= (5-4)^3+2^3=1^3+2^3 Cuando en el segundo paso simplificamos la expresión entre paréntesis,

A continuación, calculamos los valores de los términos en los exponentes y realizamos la operación de suma:

13+23=1+8=9 1^3+2^3=1+8=9 Por lo tanto, la respuesta correcta es la opción A.

Respuesta

9

Ejercicio #3

64:64= 6\sqrt{4}:6\sqrt{4}=

Solución en video

Solución Paso a Paso

Respuesta

4 4

Ejercicio #4

Indique el número faltante:

61+16+81=2 6^1+1^6+\sqrt{81}=\textcolor{red}{☐}^2

Solución en video

Solución Paso a Paso

Simplificamos la sección izquierda de la ecuación mediante cálculo directo:

61+16+81=26+1+9=216=2 6^1+1^6+\sqrt{81}=\textcolor{red}{☐}^2 \\ 6+1+9=\textcolor{red}{☐}^2\\ 16=\textcolor{red}{☐}^2\\ Cuando calculamos el valor numérico del término en la potencia, del término en la raíz y recordamos que elevar el número 1 para cualquier potencia siempre dará como resultado 1,

Ahora examinamos la ecuación que recibimos, en el lado izquierdo el número 16 y en el lado derecho un número (que es desconocido) elevado a la potencia al cuadrado,

Por eso nos hacemos la pregunta: "¿Qué número elevamos a la segunda potencia para obtener el número 16?"

Y la respuesta es, por supuesto, el número 4,

Por lo tanto, se cumple:

16=42 16=\textcolor{red}{4}^2 Sin embargo, al tratarse de una potencia par (potencia 2), también hay que tener en cuenta la posibilidad negativa,

Es decir, también se cumple que:

16=(4)2 16=\textcolor{red}{(-4)}^2

Es decir, la respuesta correcta es la opción C.

Respuesta

4,4 4,\hspace{4pt}-4

Ejercicio #5

Indica el signo correspondiente:

3+(10032114):30+3 __ 62:6(32)6 -3+(\sqrt{100}-3^2-1^{14}):30+3\text{ }\text{\textcolor{red}{\_\_}}\text{ }6^2:6\cdot(3-2)-6

Solución en video

Solución Paso a Paso

Para resolver un problema dado, ya sea en adición o en cualquier otra operación simplemente simplifica cada uno de los términos que se presentan por separado,

esto se hace dentro del marco del orden de operaciones, que establece que la prioridad es para la multiplicación y división antes que la adición y sustracción, y que las operaciones anteriores se aplican a todos,

A. Comenzaremos con los términos que están a la izquierda en el problema dado:

3+(10032114):30+3 -3+(\sqrt{100}-3^2-1^{14}):30+3 Primero simplificamos los términos que están en las operaciones de división, esto se hace en conformidad con el orden de operaciones mencionado anteriormente, teniendo en cuenta que la prioridad es para la sustracción, por lo tanto, comenzaremos calculando los valores numéricos de los denominadores en las potencias (esto dentro de que recordamos que al definir la raíz cuadrada como potencia, la raíz cuadrada es una potencia para todo), a continuación, realizamos las operaciones de sustracción que están dentro de los denominadores y finalmente realizamos la operación de división que se aplica sobre los denominadores:

3+(10032114):30+3=3+(1091):30+3=3+0:30+3=3+0+3 -3+(\sqrt{100}-3^2-1^{14}):30+3 =\\ -3+(10-9-1):30+3 =\\ -3+0:30+3 =\\ -3+0+3 \\ En el último paso recordamos que dividir el número 0 por cualquier número (diferente de cero) dará como resultado 0, continuamos simplificando los términos que recibimos en el último paso y realizamos la operación de multiplicación:

3+0+3=0 -3+0+3 =\\ 0 Terminamos de simplificar los términos que están a la izquierda en el problema dado, resumimos los pasos del proceso:

Recibimos que:

3+(10032114):30+3=3+0:30+3=0 -3+(\sqrt{100}-3^2-1^{14}):30+3 =\\ -3+0:30+3 =\\ 0

B. Continuaremos y simplificaremos los términos que están a la derecha en el problema dado:

62:6(32)6 6^2:6\cdot(3-2)-6 En esta parte, al igual que en la anterior, simplificamos los términos dentro del marco del orden de operaciones,

en este término se establece una multiplicación que se aplica sobre los términos en los denominadores, por lo tanto, comenzaremos simplificando este término, en consecuencia calcularemos los valores numéricos del denominador que está en potencia que es el dividendo en el primer término de la izquierda en el término dado:

62:6(32)6=36:616 6^2:6\cdot(3-2)-6 =\\ 36:6\cdot1-6 \\ Continuamos y recordamos que la multiplicación y división tienen prioridad sobre la adición y sustracción, teniendo en cuenta además que entre las operaciones de multiplicación y división no hay una prioridad definida, una sobre la otra, proveniente del orden de operaciones mencionado, por lo tanto, calcularemos los valores numéricos del denominador del primer término de la izquierda (incluyendo las operaciones de multiplicación y división) en el proceso de realizar una operación después de otra según el orden de izquierda a derecha (este es el orden natural de las operaciones), a continuación, completaremos el cálculo dentro del proceso de realizar la operación de sustracción:

36:616=616=66=0 36:6\cdot1-6 =\\ 6\cdot1-6 =\\ 6-6 =\\ 0 Terminamos de simplificar los términos que están a la derecha en el problema dado, resumimos los pasos del proceso:

Recibimos que:

62:6(32)6=36:616=0 6^2:6\cdot(3-2)-6 =\\ 36:6\cdot1-6 =\\ 0 Regresamos al problema original, y presentamos los resultados de simplificar los términos que se reportaron en A y B:

3+(10032114):30+3 __ 62:6(32)60 __ 0 -3+(\sqrt{100}-3^2-1^{14}):30+3\text{ }\text{\textcolor{red}{\_\_}}\text{ }6^2:6\cdot(3-2)-6 \\ \downarrow\\ 0\text{ }\text{\textcolor{red}{\_\_}}\text{ }0 Como resultado, la respuesta correcta es respuesta B.

Respuesta

= =

Temas que se aprenden en secciones posteriores

  1. Jerarquía de operaciones: (raíces)
  2. Jerarquía de operaciones con paréntesis
  3. División y línea de fracción
  4. Los números 0 y 1 en las operaciones
  5. Elemento neutro / Elementos neutros
  6. Inverso multiplicativo
  7. El orden de las operaciones / Jerarquía de operaciones
  8. Orden o jerarquía de las operaciones con fracciones