Ejemplos, ejercicios y soluciones de la propiedad conmutativa

¿Quieres aprender sobre la propiedad conmutativa?

¡Una de las cosas más importantes en el estudio de la propiedad conmutativa es la práctica!
En esta página encontrarás más de 5 ejemplos y ejercicios con soluciones sobre la propiedad conmutativa
y así podrás practicar por tu cuenta y profundizar en tus conocimientos.

🏆Ejercicios de propiedad conmutativa

¿Por qué es importante la práctica de la propiedad conmutativa?

Incluso si ya estudiamos las diferentes propiedades (la propiedad distributiva, la propiedad asociativa y la propiedad conmutativa) y estamos seguros de haber entendido el asunto en general, ¡es importante resolver ejercicios por nuestra cuenta!
Vale la pena practicar tantos tipos de preguntas como sea posible y pasar por una gran cantidad de ejemplos sobre la propiedad conmutativa.
Solo practicando y resolviendo una gran cantidad de preguntas y ejercicios de la propiedad conmutativa para niños, podrás asimilar a fondo el tema y adquirirás las herramientas necesarias para enfrentar cualquier desafío por tus propios medios.

Preguntas básicas

Ejemplos con soluciones de la propiedad conmutativa

Ejercicio #1

Resuelva el ejercicio

23+1 2-3+1

Solución

Utilizamos la propiedad sustitutiva y agregamos paréntesis para la operación de suma:

(2+1)3= (2+1)-3=

Ahora, resolvemos el ejercicio de acuerdo al orden de operaciones aritméticas:

2+1=3 2+1=3

33=0 3-3=0

Respuesta

0

Ejercicio #2

Resuelva el ejercicio

34+2+1 3-4+2+1

Solución

Usaremos la propiedad sustitutiva para ordenar un poco más cómodamente el ejercicio, añadiremos paréntesis a la operación de suma:
(3+2+1)4= (3+2+1)-4=
Resolvemos primero la suma, de izquierda a derecha:
3+2=5 3+2=5

5+1=6 5+1=6
Y por último, restamos:

64=2 6-4=2

Respuesta

2

Ejercicio #3

Resuelva el ejercicio

5+4+13 -5+4+1-3

Solución

De acuerdo con el orden de las operaciones aritméticas, la suma y la resta están en un mismo nivel y, por lo tanto, deben resolverse de izquierda a derecha.

Sin embargo, en el ejercicio podemos utilizar la propiedad sustitutiva para facilitar la solución.

-5+4+1-3

4+1-5-3

5-5-3

0-3

-3

Respuesta

3 -3

Ejercicio #4

7+4+3+6=? 7+4+3+6=\text{?}

Solución

Para facilitar la resolución del ejercicio, intentamos sumar números que nos den un resultado de 10.

Tengamos en cuenta que:

7+3=10 7+3=10

6+4=10 6+4=10

Ahora, obtenemos un ejercicio más conveniente para resolver:

10+10=20 10+10=20

Respuesta

20

Ejercicio #5

19+34+21+10+6=? 19+34+21+10+6=\text{?}

Solución

Para facilitar la resolución intentamos sumar números que nos den un resultado redondo.

Tengamos en cuenta que:

19+21=40 19+21=40

34+6=40 34+6=40

Ahora, obtenemos un ejercicio más conveniente para resolver:

40+40+10=80+10=90 40+40+10=80+10=90

Respuesta

90

Ejercicio #6

74+32+6+4+4=? 74+32+6+4+4=\text{?}

Solución

Para facilitar la resolución intentamos sumar números que nos den un resultado redondo.

Tengamos en cuenta que:

4+4=8 4+4=8

Ahora obtenemos el ejercicio:

74+36+6+8= 74+36+6+8=

Tengamos en cuenta que:

74+6=80 74+6=80

32+8=40 32+8=40

Ahora, obtenemos un ejercicio más cómodo para resolver:

80+40=120 80+40=120

Respuesta

120

Ejercicio #7

5172=? 5\cdot17\cdot2=\text{?}

Solución

De acuerdo con las reglas del orden de las operaciones aritméticas, en un ejercicio donde solo hay una operación de multiplicación, se puede cambiar el orden de los números.

Reordenamos el ejercicio para obtener un número redondo que nos ayudará más adelante en la solución:

5×2×17= 5\times2\times17=

Ahora resolvemos el ejercicio de izquierda a derecha:

5×2=10 5\times2=10

10×17=170 10\times17=170

Respuesta

170

Ejercicio #8

555222=? 5\cdot5\cdot5\cdot2\cdot2\cdot2=?

Solución

Usamos la propiedad sustitutiva y organizamos el ejercicio en el siguiente orden:

5×2×5×2×5×2= 5\times2\times5\times2\times5\times2=

Colocamos paréntesis en el ejercicio:

(5×2)×(5×2)×(5×2)= (5\times2)\times(5\times2)\times(5\times2)=

Resolvemos de izquierda a derecha:

10×10×10= 10\times10\times10=

(10×10)×10= (10\times10)\times10=

100×10=1000 100\times10=1000

Respuesta

1000

Ejercicio #9

5+2= -5+2=

Solución

Si trazamos una línea que comienza en menos cinco y termina en 5

Iremos desde el punto menos cinco dos pasos hacia adelante (+2) llegaremos al número menos 3.

Respuesta

3 -3

Ejercicio #10

10523= 10-5-2-3=

Solución

Dado que todo el ejercicio es una resta, resolvemos el ejercicio de izquierda a derecha:

105=5 10-5=5

52=3 5-2=3

33=0 3-3=0

Respuesta

0 0

Ejercicio #11

42+24= 4-2+2-4=

Solución

Dado que nos referimos a ejercicios de suma y resta, resolvemos el ejercicio de izquierda a derecha:

42=2 4-2=2

2+2=4 2+2=4

44=0 4-4=0

Respuesta

0 0

Ejercicio #12

32+10x= 3-2+10-x=

Solución

Resolvemos el ejercicio de izquierda a derecha:

32=1 3-2=1

1+10=11 1+10=11

Ahora obtenemos:

11x 11-x

Respuesta

11x 11-x

Ejercicio #13

11×3+7= 11\times3+7=

Solución

En este ejercicio no es posible utilizar la propiedad sustitutiva, por lo tanto resolvemos tal cual de izquierda a derecha según el orden de las operaciones aritméticas.

Es decir, primero resolvemos el ejercicio de multiplicación y luego sumamos:

11×3=33 11\times3=33

33+7=40 33+7=40

Respuesta

40 40

Ejercicio #14

12×13+14= 12\times13+14=

Solución

De acuerdo al orden de las operaciones aritméticas, comenzamos desde el ejercicio de multiplicación y luego con la suma.

12×13=156 12\times13=156

Ahora obtenemos el ejercicio:

156+14=170 156+14=170

Respuesta

170 170

Ejercicio #15

14×4+2= \frac{1}{4}\times4+2=

Solución

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio de multiplicación:

Agregamos el 4 en el numerador de la fracción:

1×44+2= \frac{1\times4}{4}+2=

Resolvemos el ejercicio en el numerador de la fracción y obtenemos:

44+2=1+2=3 \frac{4}{4}+2=1+2=3

Respuesta

3 3

¿Cuántos ejercicios y ejemplos con la propiedad conmutativa es necesario realizar?

El número de ejercicios y ejemplos de propiedad conmutativa que debemos practicar, varía de persona en persona.
Nuestra recomendación general es resolver una gran cantidad de ejercicios y ejemplos para cubrir tantos tipos de ejercicios como sea posible.

Cuantos más ejercicios realices con propiedad conmutativa, comprenderás el tema más profundamente y aumentará la probabilidad de que te vaya bien y que tengas éxito.

Las preguntas más nuevas