Propiedad conmutativa de la suma - Ejemplos, Ejercicios y Soluciones

Propiedad conmutativa de la suma 

La propiedad conmutativa de la suma nos permite alterar la posición de los factores entre los que hay una operación de suma y obtener la misma cantidad total.
De hecho, no importa cuántos factores haya en el ejercicio, podemos ordenarlos como queramos y obtener un resultado correcto.
También trabaja en expresiones algebraicas y nos acompañará todo el camino con las matemáticas.

Formularemos la propiedad conmutativa de la suma en su conjunto:
a+b=b+a a+b=b+a

y también en expresiones algebraicas:
X + número = número + X

a+b=b+a

Practicar Propiedad conmutativa de la suma

Ejercicio #1

74+32+6+4+4=? 74+32+6+4+4=\text{?}

Solución en video

Solución Paso a Paso

Para facilitar la resolución intentamos sumar números que nos den un resultado redondo.

Tengamos en cuenta que:

4+4=8 4+4=8

Ahora obtenemos el ejercicio:

74+36+6+8= 74+36+6+8=

Tengamos en cuenta que:

74+6=80 74+6=80

32+8=40 32+8=40

Ahora, obtenemos un ejercicio más cómodo para resolver:

80+40=120 80+40=120

Respuesta

120

Ejercicio #2

555222=? 5\cdot5\cdot5\cdot2\cdot2\cdot2=?

Solución en video

Solución Paso a Paso

Usamos la propiedad sustitutiva y organizamos el ejercicio en el siguiente orden:

5×2×5×2×5×2= 5\times2\times5\times2\times5\times2=

Colocamos paréntesis en el ejercicio:

(5×2)×(5×2)×(5×2)= (5\times2)\times(5\times2)\times(5\times2)=

Resolvemos de izquierda a derecha:

10×10×10= 10\times10\times10=

(10×10)×10= (10\times10)\times10=

100×10=1000 100\times10=1000

Respuesta

1000

Ejercicio #3

7+4+3+6=? 7+4+3+6=\text{?}

Solución en video

Solución Paso a Paso

Para facilitar la resolución del ejercicio, intentamos sumar números que nos den un resultado de 10.

Tengamos en cuenta que:

7+3=10 7+3=10

6+4=10 6+4=10

Ahora, obtenemos un ejercicio más conveniente para resolver:

10+10=20 10+10=20

Respuesta

20

Ejercicio #4

5172=? 5\cdot17\cdot2=\text{?}

Solución en video

Solución Paso a Paso

De acuerdo con las reglas del orden de las operaciones aritméticas, en un ejercicio donde solo hay una operación de multiplicación, se puede cambiar el orden de los números.

Reordenamos el ejercicio para obtener un número redondo que nos ayudará más adelante en la solución:

5×2×17= 5\times2\times17=

Ahora resolvemos el ejercicio de izquierda a derecha:

5×2=10 5\times2=10

10×17=170 10\times17=170

Respuesta

170

Ejercicio #5

Resuelva el ejercicio

23+1 2-3+1

Solución en video

Solución Paso a Paso

Utilizamos la propiedad sustitutiva y agregamos paréntesis para la operación de suma:

(2+1)3= (2+1)-3=

Ahora, resolvemos el ejercicio de acuerdo al orden de operaciones aritméticas:

2+1=3 2+1=3

33=0 3-3=0

Respuesta

0

Ejercicio #1

19+34+21+10+6=? 19+34+21+10+6=\text{?}

Solución en video

Solución Paso a Paso

Para facilitar la resolución intentamos sumar números que nos den un resultado redondo.

Tengamos en cuenta que:

19+21=40 19+21=40

34+6=40 34+6=40

Ahora, obtenemos un ejercicio más conveniente para resolver:

40+40+10=80+10=90 40+40+10=80+10=90

Respuesta

90

Ejercicio #2

Resuelva el ejercicio

34+2+1 3-4+2+1

Solución en video

Solución Paso a Paso

Usaremos la propiedad sustitutiva para ordenar un poco más cómodamente el ejercicio, añadiremos paréntesis a la operación de suma:
(3+2+1)4= (3+2+1)-4=
Resolvemos primero la suma, de izquierda a derecha:
3+2=5 3+2=5

5+1=6 5+1=6
Y por último, restamos:

64=2 6-4=2

Respuesta

2

Ejercicio #3

42+24= 4-2+2-4=

Solución en video

Solución Paso a Paso

Dado que nos referimos a ejercicios de suma y resta, resolvemos el ejercicio de izquierda a derecha:

42=2 4-2=2

2+2=4 2+2=4

44=0 4-4=0

Respuesta

0 0

Ejercicio #4

32+10x= 3-2+10-x=

Solución en video

Solución Paso a Paso

Resolvemos el ejercicio de izquierda a derecha:

32=1 3-2=1

1+10=11 1+10=11

Ahora obtenemos:

11x 11-x

Respuesta

11x 11-x

Ejercicio #5

12×13+14= 12\times13+14=

Solución en video

Solución Paso a Paso

De acuerdo al orden de las operaciones aritméticas, comenzamos desde el ejercicio de multiplicación y luego con la suma.

12×13=156 12\times13=156

Ahora obtenemos el ejercicio:

156+14=170 156+14=170

Respuesta

170 170

Ejercicio #1

10523= 10-5-2-3=

Solución en video

Solución Paso a Paso

Dado que todo el ejercicio es una resta, resolvemos el ejercicio de izquierda a derecha:

105=5 10-5=5

52=3 5-2=3

33=0 3-3=0

Respuesta

0 0

Ejercicio #2

11×3+7= 11\times3+7=

Solución en video

Solución Paso a Paso

En este ejercicio no es posible utilizar la propiedad sustitutiva, por lo tanto resolvemos tal cual de izquierda a derecha según el orden de las operaciones aritméticas.

Es decir, primero resolvemos el ejercicio de multiplicación y luego sumamos:

11×3=33 11\times3=33

33+7=40 33+7=40

Respuesta

40 40

Ejercicio #3

24+61= -2-4+6-1=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, resolvemos el ejercicio de izquierda a derecha:

24=6 -2-4=-6

6+6=0 -6+6=0

01=1 0-1=-1

Respuesta

1 -1

Ejercicio #4

4:2+2= 4:2+2=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio de división:

4:2=2 4:2=2

Ahora obtenemos el ejercicio:

2+2=4 2+2=4

Respuesta

4 4

Ejercicio #5

5+2= -5+2=

Solución en video

Solución Paso a Paso

Si trazamos una línea que comienza en menos cinco y termina en 5

Iremos desde el punto menos cinco dos pasos hacia adelante (+2) llegaremos al número menos 3.

Respuesta

3 -3

Temas que se aprenden en secciones posteriores

  1. La propiedad conmutativa
  2. Propiedad conmutativa de la multiplicación
  3. Propiedad distributiva
  4. La propiedad distributiva para alumnos de 1.º de ESO
  5. La propiedad distributiva en el caso de las divisiones
  6. La propiedad distributiva en el caso de la multiplicación
  7. Las propiedades conmutativas, la multiplicación, la propiedad distributiva y ¡otras más!
  8. La propiedad asociativa
  9. Propiedad asociativa de la suma
  10. Propiedad asociativa de la multiplicación
  11. Operaciones aritméticas avanzadas: Resta de sumas, resta de diferencias, división por producto y división por cociente
  12. Resta de números enteros con paréntesis en los que hay sumas
  13. División de números enteros entre paréntesis en los que hay una división
  14. Resta de números enteros con paréntesis en los que hay restas
  15. División de números enteros entre paréntesis en los que hay una multiplicación