¿Cómo calcular la media ponderada?

🏆Ejercicios de media ponderada

La media ponderada: ¿qué significa realmente?

Una media ponderada es una media entre números con un peso diferente.
Cada número tiene su propio peso y, por lo tanto, afectará a la media ponederada.
Intente reemplazar la palabra peso con la palabra importancia y de esta forma será mejor entendido su significado.
Los números son de diferente importancia. El número uno es más importante y el número uno es menos importante. No significa un número grande o pequeño, sino simplemente importante.
Cuando un número es más importante, tiene un mayor peso y tendrá un mayor efecto sobre la media ponderada.

Fórmula de media ponderada

media ponderada

Ir a prácticas

¡Pruébate en media ponderada!

einstein

Los resultados del ranking del hotel están determinados por varios factores, cada uno con un peso diferente.
Esta es la valoración del hotel "Turista Feliz":

Satisfacción 50% 4.5
Limpieza 30% 4
Servicio al cliente: 10% 5
Desayuno: 10% 3

¿Cuál es la calificación del hotel?

50%30%10%10%ValoraciónPesoSatisfacciónLimpiezaServicioDesayuno4.5453

Quiz y otros ejercicios

¿Cómo lo recordarán?
Presten atención a la palabra ponderada.
Recuerden que los números no tienen el mismo peso. No tienen la misma importancia y al calcular la media ponderada tendrás que tener en cuenta los pesos de los números.
Imagina que tienes que calcular el promedio de tu nota final en la asignatura - lengua castellana.

Por lo tanto, si obtuviste 100 100 en un examen pero 20 20 en la prueba final, la puntuación de 20 20 te afectará mucho más en la nota final, puesto que el peso de la puntuación en la última prueba es más alto que el peso de la puntuación en la prueba de inicio de año.


Tenga en cuenta que debe hacer coincidir cada número con su peso de acuerdo con el dato de la consigna.
Multiplique el número por su peso, y luego agregue la multiplicación del segundo número por su peso. Así sucesivamente a todos los números que deba calcular la media ponderada.


Ejemplos para calcular la media ponderada:

El ejemplo más simple para entender dicho tema es, en realidad, de un mundo que le es familiar: el marco académico. Como saben, a lo largo de sus estudios de matemáticas, se les toman tanto examenes como evaluaciones. Como es bien sabido, los examenes tienen mayor peso sobre la nota final del boletín de calificaciones, mientras que las evaluaciones tienen un peso menor. Este es un caso clásico de media ponderada.

Suponga que estas son sus calificaciones en matemáticas en el primer semestre:

  • Evaluación de ecuaciones 75 75 con un peso aproximado del 10% 10 \% .
  • Evaluación de geometría sobre triángulos 95 95 con un peso aproximado del 10% 10\%
  • Un examen final sobre todo el material estudiado 85 85 con un peso aproximado del 80% 80\% .

El cálculo de la media ponderada será realizada de la siguiente formula:

75×0.1+95×0.1+85×0.8 75\times0.1+95\times0.1+85\times0.8

La media ponderada obtenida es: 85 85


Otro ejemplo:

Para ilustrar la importancia de cada porcentaje en la nota, demostraremos otro ejemplo: las mismas notas pero con diferentes porcentajes de peso:

  • Examen de ecuaciones 75 75 con un peso aproximado del 25% 25\% .
  • Examen de geometría sobre triángulos 95 95 con un peso aproximado del 15% 15\% .
  • Examen final sobre todo el material estudiado 85 85 con un peso aproximado del 60% 60\% .

75×0.25+95×0.15+85×0.6 75\times0.25+95\times0.15+85\times0.6

La media ponderada obtenida es: 84 84


Otro ejemplo para calcular la media ponderada:

Iván recibió las siguientes calificaciones de Inglés en el primer semestre y quiere saber cuál es su media ponderada en la asignatura.

Examen de comprensión de texto en inglés - calificación 80 80 con un peso del 20% 20\% .

Examen de vocabulario en inglés - calificación 90 90 con un peso del 20% 20\% .

Examen final del semestre - calificación 70 70 con un peso del 60% 60\% .

Cálculo de la media ponderada de las calificaciones en inglés.

0.2×80+0.2×90+70×0.6= 0.2\times80+0.2\times90+70\times0.6= media ponderada 76 76


Un ejemplo extra para calcular la media ponderada:

Miguel viajó de Madrid a Barcelona a diferentes velocidades, calcule la velocidad media de viaje (media ponderada):

80 80 km/h aproximadamente el 40% 40\% del recorrido

90 90 km/h aproximadamente el 20% 20\% del recorrido.

100 100 km/h aproximadamente el 20% 20\% del recorrido.

80×0,4+90×0,2+100×0,2= 80\times0,4+90\times0,2+100\times0,2= La velocidad media ponderada de Miguel es igual a 70 70


Tenga en cuenta: si se le pidió que calculara el promedio de las velocidades (y no la velocidad media ponderada), entonces la respuesta fue 90 90 . ¡Cada pregunta debe leerse con atención! Responder demasiado rápido ( no responder lo que se le preguntó) puede causar la pérdida de todos los puntos de la pregunta.

  • Conviertan el "problema" en una situación común de la vida cotidiana.
  • Como es bien sabido, el cálculo de la media ponderada se basa en un principio simple: cada "puntaje" / valor, se calcula individualmente de acuerdo a su peso. ¿Cómo se aborda una pregunta en la cuál se le pide calcular una media ponderada?
  • Lean la pregunta por lo menos dos veces
  • Enfatice lo fundamental: ¿Qué se le pide que realice?
  • Anote todos los datos de las preguntas en una tabla
  • Cambie el marco de la historia por una más "amigable" de la vida cotidiana. 

¡Únete a 30,000 estudiantes destacados en matemáticas!
Práctica ilimitada, guía de expertos: mejora tus habilidades matemáticas hoy
Comprueba tu conocimiento

Ejercicios

Ejercicio 1

Dado:

En cada edificio de la calle hay en promedio 4.29 4.29 pisos

Es sabido que hay dos edificios de 11 11 pisos, 4 4 edificios de 2 2 pisos y 5 5 edificios de 3 3 pisos.

Tarea

¿Cuántos edificios tienen 5 5 pisos?

Solución

Promedio=((Nuˊmero de edificios×Nuˊmero de pisos)+(Nuˊmero de edificios×Nuˊmero de pisos))Cantidad total de edificios Promedio=\frac{((Número~de~edificios\times Número~de~pisos)+(Número~de~edificios\times Número~de~pisos))}{{Cantidad~total~de~edificios}}

Marcamos el número de edificios de 5 5 pisos como X X

4.29=11×2+2×4+3×5+5×X2+4+5+X 4.29=\frac{11\times 2+2\times 4+3\times 5+5\times X}{2+4+5+X} ,4.29=22+8+15+5X11+X 4.29=\frac{22+8+15+5X}{11+X}

Multiplicamos la fórmula por: (11+X) (11+X)

4.29(11+X)=45+5X 4.29(11+X)=45+5X

47.19+4.29X=45+5X 47.19+4.29X=45+5X

Restamos de la ecuación: 45 -45 y 4.29X -4.29X

47.1945=5X4.29X 47.19-45=5X-4.29X

2.19=0.71X 2.19=0.71X

Dividimos de la ecuación en: 0.71 0.71

3=2.190.71=X 3=\frac{2.19}{0.71}=X

Respuesta

La respuesta correcta es 3 3 edificios


Ejercicio 2

En la clase del curso de biología, la distribución de los resultados de los estudiantes fue:

  • 30% 30\% de los estudiantes obtuvo 75 75
  • 20% 20\% obtuvo 68 68
  • X% X\% obtuvo…
  • El resto obtuvo 53 53

Pregunta

¿Cuál es el promedio de la clase?

Solución

Promedio=(....+Nota×Valor+Nota×Valor)100 Promedio=\frac{(....+Nota\times Valor+Nota\times Valor)}{100}

“El resto” en la pregunta= 1003020X=50X 100-30-20-X=50-X

media=3075+2068+X94+(50X)53100 media=\frac{30\cdot75+20\cdot68+X\cdot94+(50-X)53}{100}

=2250+1360+94X+505353X100 =\frac{2250+1360+94X+50\cdot53-53X\frac{}{}}{100}

=6260+41X100=62.6+0.41X =\frac{6260+41X}{100}=62.6+0.41X

Respuesta

=6260+41X100=62.6+0.41X =\frac{6260+41X}{100}=62.6+0.41X


¿Sabes cuál es la respuesta?

Ejercicio 3

En Ciudad de México decidieron construir jardínes nuevos:

En 4 4 jardines plantaron 47 47 plantas.

En 9 9 jardines plantaron 38 38 plantas.

En Y Y jardines plantaron X X plantas.

Tarea

¿Cuántas plantas se plantaron en cada jardín en promedio?

Solución

Plantas en el jardıˊn en promedio=(Nuˊmero de plantas en jardıˊn×Nuˊmero de jardines+.....)Cantidad total de jardines Plantas~en~el~jardín~en~promedio=\frac{(Número~de~plantas~en~jardín\times Número~de~jardines+.....)}{Cantidad~total~de~jardines}

=474+389+X×Y4+9+Y =\frac{47\cdot4+38\cdot9+X\times Y}{4+9+Y}

=188+342+XY13+Y=530+XY13+Y =\frac{188+342+XY}{13+Y}=\frac{530+XY}{13+Y}

Respuesta

La respuesta correcta es 530+XY13+Y \frac{530+XY}{13+Y}


Ejercicio 4

Dado: Rebeca tiene 17 17 pesas que pesan un promedio de 5.22 5.22 kg.

Es sabido que 3 3 pesas pesan 4.5 4.5 kg, 4 4 pesas pesan 5.2 5.2 kg y el resto pesan 7.1 7.1 kg o 3.8 3.8 kg.

Tarea

¿Cuántas pesas tiene Rebeca que pesan7.1 7.1 kg?

Solución

Marcamos el número de pesas que pesan 7.1 7.1 kg como X X.

El número de pesas que pesan 7.1 7.1 kg - número de pesas que pesan 5.25.2 kg - número de pesas que pesan 4.5 4.5 kg - Cantidad de pesas = Número de pesas que pesan 3.8 3.8 kg

Media ponderada=(Peso×Nuˊmero de pesas+Peso×Nuˊmero de pesas..)Cantidad de pesas Media~ponderada=\frac{(Peso\times Número~de~pesas+Peso\times Número~de~pesas\ldots..)}{Cantidad~de~pesas}

5.22=4.53+5.24+7.1×X+3.8×(10X)17 5.22=\frac{4.5\cdot3+5.2\cdot4+7.1\times X+3.8\times(10-X)}{17}

Multiplicamos la ecuación en 17 17 .

88.74=13.5+20.8+7.1X+383.8X 88.74=13.5+20.8+7.1X+38-3.8X

88.74=34.3+38+3.3X 88.74=34.3+38+3.3X

88.74=72.3+3.3X 88.74=72.3+3.3X

Restamos de la ecuación 72.3 72.3

16.44=3.3X 16.44=3.3X

Dividimos la ecuación en 3.3 3.3

5=16.443.3=X 5=\frac{16.44}{3.3}=X

Respuesta:

El número de pesas que pesan 7.1 7.1 es 5 5


Ejemplos y ejercicios con soluciones sobre cómo calcular la media ponderada

Ejercicio #1

¿Cuál es la puntuación de Miguel, si obtuvo 79 en el primer examen y 83 en el segundo?

Considerando que el peso de la primera prueba es del 30% y de la segunda del 70%.

Solución Paso a Paso

Para resolver el promedio ponderado, usaremos la siguiente fórmula:

examen 2 * peso de la evaluación 2 + examen 1 * peso de la evaluación 1 = Promedio ponderado

 

Colocaremos los datos en la fórmula, donde los pesos estarán en números decimales:

0.3*79 + 0.7*83 = 
23.7+58.1 = 

81.8

 

Respuesta

81.8 81.8

Comprueba que lo has entendido

"¿Puedo aprender un promedio ponderado en una clase en línea?"

¡Por supuesto! De hecho, no hay asignatura que no se pueda aprender en una clase online. La lección se realiza en tiempo real, con el alumno y el maestro conectados para una clase privada. La misma se realiza a través de una videollamada para que el alumno pueda calcular los ejercicios y presentarlos ante la cámara. Mientras tanto, el profesor puede sugerir formas adicionales de resolverlos, escribirlos en la página y presentarlos ante la cámara. Consejos para optimizar su lección privada:

  • Defina previamente qué tema le gustaría estudiar en la clase
  • Prepare preguntas / ejercicios que le gustaría resolver
  • Preparen con anticipación un cuaderno, un libro de texto y elementos de escritura.
  • Conéctese a una lección desde una habitación silenciosa y con una conexión a internet de calidad
  • Consejo: al final de la lección, coordine la siguiente lección con el tutor

¿Cuánto necesitaré practicar hasta que aprenda a calcular la fórmula?

El cálculo de la media ponderada se considera, en muchas ocasiones, un tipo de pregunta para regalar puntos. La dificultad es subjetiva y puede variar de un estudiante a otro. Practique los ejercicios tal como los da el profesor en el aula. Si ha tenido éxito en la mayor parte de la práctica, puede evaluar el tema exitosamente. Si aún encuentra cierta dificultad, puede perfeccionar el tema con un profesor.  

La fórmula es simple de aplicar, y requiere una comprensión básica de los porcentajes (20% que se convierte en 0.2) por supuesto, competencia en ejercicios simples de suma y multiplicación. ¿Por qué, después de todo, hay estudiantes que fallan en el cálculo de la media ponderada? Porque tienen prisa por responder la pregunta sin darse cuenta de lo que se les preguntó. Si bien no se comprende en profundidad la pregunta que se hace, los datos pueden calcularse sobre la base de una fórmula de "promedio clásico".


¿Crees que podrás resolverlo?

¿Cómo memorizas una fórmula? ¡Solo practícalo!

La mejor manera de familiarizarse con la fórmula y simplemente "fluir" con ella, es practicarla. El hecho de que comprendan la importancia de la media ponderada no es suficiente, y es importante practicar tantos ejercicios diferentes como sea posible que les desafíen a ustedes. A veces, hay un gran esfuerzo para memorizar la fórmula como una fórmula, pero sin invertir tiempo en su aplicación real. Tenga en cuenta que deberá calcular la media ponderada para pesos, formas, precios, puntajes, etc.


Para un examen de matemáticas no es posible estudiar en un solo día.

Un cálculo de la media ponderada no requiere de ustedes demasiado, sino simplemente enfocarse en una técnica específica. El reto para muchos alumnos es poder contener todo el material enseñado a lo largo del semestre, lo que a veces resulta una tarea no tan sencilla. De esta forma, se crean distintas brechas en el material estudiado, tanto en temas un poco más complejos como en aquellos que son relativamente sencillos, como por ejemplo el cálculo de la media ponderada. Recuerde que las matemáticas no son posibles ni vale la pena aprenderlas el día antes de la evaluación, por lo que si existen dificultades, debe estudiarlas antes de los próximos exámenes.


Comprueba tu conocimiento

Clase privada - Todas las opciones están abiertas para ustedes

Existen 3 maneras de estudiar una clase privada:

  • En la casa del estudiante - El profesor se dirige allí
  • En la casa del profesor - los estudiantes se dirigen al hogar del tutor.
  • En línea: los dos se reúnen para una clase privada EN VIVO, cada uno desde su propia casa.

Elija el formato de lección que más le convenga, todo por su éxito en la próxima evaluación y en los estudios de matemáticas del próximo año escolar. ¡Exitosamente!


Si te interesa este artículo también te pueden interesar los siguientes artículos

¿Cómo calcular la velocidad promedio?

¿Cómo calcular el área de un hexágono regular?

¿Cómo calcular porcentajes?

En el blog de Tutorela encontrarás una variedad de artículos sobre matemáticas.


¿Sabes cuál es la respuesta?
Ir a prácticas