Por un lado, las funciones son un concepto bastante abstracto, pero por otro lado es un tema muy útil en muchas áreas de las matemáticas. El tema de las funciones domina muchas áreas, incluyendo álgebra, trigonometría, cálculo diferencial y de integrales y más. Por lo tanto, es importante comprender el concepto de las funciones, para que se pueda aplicar en cualquiera de los campos de las matemáticas, y especialmente cuando comenzamos a aprender funciones en séptimo grado. 

Una función expresa una relación entre dos variables (X e Y)

¿Qué es una función?

Una función expresa una relación entre dos variables (X e Y)

  • X X representa una variable independiente 
  • Y Y representa una variable dependiente

Una variable independiente (X) (X) es una constante no variable por la cual explicamos (Y) (Y) , la variable dependiente

Por ejemplo , si el dato es que Romina trabajó como niñera y ganó 30 pesos por hora y queremos saber cuánto ganó Daniela después de 10 10 horas, la cantidad de horas que trabajó es en realidad la variable independiente (X) (X) con la que sabemos cuánto ganó. En definitiva esta es la variable dependiente. (Y) (Y)

En otras palabras, se puede decir que la cantidad que ganó Daniela es en función del número de horas que trabajó (X) (X) .
Marcaremos los datos de la función algebraicamente de esta forma: fx=X×30 fx=X\times30

Es importante recordar que cada elemento en el área X X siempre tendrá solo un elemento en el rango Y Y .
Esto significa que no puede ser que durante las 10 10 horas que trabajó Romina, recibió tanto 300 300 pesos como 200 200 pesos.


Practicar Funciones

ejemplos con soluciones para Funciones

Ejercicio #1

Determina qué dominio corresponde a la función descrita:

La función describe la cantidad de combustible en el tanque del automóvil según la distancia recorrida por el mismo.

Solución Paso a Paso

Según la definición, la cantidad de combustible en el tanque del automóvil siempre disminuirá, ya que durante el viaje el automóvil consume combustible para desplazarse.

Por lo tanto, el dominio que es adecuado para esta función es - siempre decreciente.

Respuesta

Siempre decreciente

Ejercicio #2

Elija la gráfica que mejor describa la siguiente historia:

Temperatura del agua tibia (Y) después de ponerla en el congelador en función del tiempo (X)

Solución Paso a Paso

Dado que el punto de congelación del agua está por debajo de 0, la temperatura del agua debe descender por debajo de 0.

La gráfica en la respuesta B describe una función decreciente y, por lo tanto, esta es la respuesta correcta.

Respuesta

TiempoTemperatura'000

Ejercicio #3

Elija la gráfica que mejor describa lo siguiente:

Aceleración de una pelota (Y) después de lanzarla desde un edificio en función del tiempo (X)

Solución Paso a Paso

Dado que la aceleración depende del tiempo, será constante.

La fuerza de gravedad en la Tierra es constante, lo que significa que la velocidad de la gravedad terrestre es constante y, por lo tanto, el gráfico será recto.

El gráfico que aparece en la respuesta B satisface esto.

Respuesta

Tiempo101010Velocidad

Ejercicio #4

Determina si la función es creciente, decreciente o constante. Para cada función comprueba tus respuestas mediante un gráfico o una tabla.

Para cada número, multiplícalo por: (1) (-1)

Solución en video

Solución Paso a Paso

La función es:

f(x)=(1)x f(x)=(-1)x

Comencemos suponiendo que x es igual a 0:

f(0)=(1)×0=0 f(0)=(-1)\times0=0

Ahora supongamos que x es igual a menos 1:

f(1)=(1)×(1)=1 f(-1)=(-1)\times(-1)=1

Ahora supongamos que x es igual a 1:

f(1)=(1)×1=1 f(1)=(-1)\times1=-1

Ahora supongamos que x es igual a 2:

f(2)=(1)×2=2 f(2)=(-1)\times2=-2

Graficamos todos los puntos en la gráfica de la función:

–5–5–5–4–4–4–3–3–3–2–2–2–1–1–1111222333444555666–3–3–3–2–2–2–1–1–1111222000

Podemos ver que la función que obtuvimos es una función decreciente.

Respuesta

Decreciente

Ejercicio #5

Determina si la función es creciente, decreciente o constante. Para cada función comprueba tus respuestas mediante un gráfico o una tabla.

Cada número lo dividimos por: (1) (-1)

Solución en video

Solución Paso a Paso

La función es:

f(x)=x1 f(x)=\frac{x}{-1}

Comencemos suponiendo que x es igual a 0:

f(0)=01=0 f(0)=\frac{0}{-1}=0

Ahora supongamos que x es igual a 1:

f(1)=11=1 f(1)=\frac{1}{-1}=-1

Ahora supongamos que x es igual a 2:

f(1)=11=1 f(-1)=\frac{-1}{-1}=1

Graficamos todos los puntos en la gráfica de la función:

–5–5–5–4–4–4–3–3–3–2–2–2–1–1–1111222333444555666–1–1–1111222333444000

Vemos que obtuvimos una función decreciente.

Respuesta

Decreciente

Ejercicio #6

Determina si la función es creciente, decreciente o constante. Para cada función comprueba tus respuestas mediante un gráfico o una tabla.

Para cada número, multiplícalo por 0

Solución en video

Solución Paso a Paso

La función es:

f(x)=x×0 f(x)=x\times0

Comencemos suponiendo que x es igual a 0:

f(0)=0×0=0 f(0)=0\times0=0

Ahora supongamos que x es igual a 1:

f(1)=1×0=0 f(1)=1\times0=0

Ahora supongamos que x es igual a -1:

f(1)=(1)×0=0 f(-1)=(-1)\times0=0

Ahora supongamos que x es igual a 2:

f(2)=2×0=0 f(2)=2\times0=0

Graficamos todos los puntos en la gráfica de la función:

–5–5–5–4–4–4–3–3–3–2–2–2–1–1–1111222333444555666–3–3–3–2–2–2–1–1–1111222000

Podemos ver que la función que obtuvimos es una función constante.

Respuesta

Constante

Ejercicio #7

¿En qué dominio la función aumenta?

–20–20–20–10–10–10101010202020–10–10–10101010000

Solución en video

Respuesta

x > 0

Ejercicio #8

¿En qué dominio la función crece?

000

Solución en video

Respuesta

x<0

Ejercicio #9

¿En qué dominio la función es ascendente?

–5–5–5555101010151515–5–5–5555000

Solución en video

Respuesta

Todox x

Ejercicio #10

¿En qué dominio la función es negativa?

–0.5–0.5–0.50.50.50.51111.51.51.5222000

Solución en video

Respuesta

x > 1

Ejercicio #11

¿En qué intervalo la función es creciente?

Línea púrpura x=0.6 x=0.6

111222333111000

Solución en video

Respuesta

x<0.6

Ejercicio #12

¿En qué área la función sube?

Línea negra.x=1.1 x=1.1

–2–2–2222444666222000

Solución en video

Respuesta

1.1 > x > 0

Ejercicio #13

¿En qué dominio la función crece?

Línea verde x=0.8 x=-0.8

–2–2–2222222000

Solución en video

Respuesta

Todo x x

Ejercicio #14

"¿En qué intervalo la función desciende?

Línea roja"x=0.65 x=0.65

111222333–1–1–1111000

Solución en video

Respuesta

Todo x x

Ejercicio #15

¿En qué intervalo la función desciende?

La línea roja x=1.3 x=1.3

–4–4–4–2–2–2222444666888101010–2–2–2222444000

Solución en video

Respuesta

1.3 > x > -1.3