Ejemplos, ejercicios y soluciones de área de un triángulo escaleno

¿Quieres aprender como calcular el área del triángulo escaleno?

¡Lo primordial en el estudio de geometría , como ya lo sabes, es la práctica!
En esta página encontrarás más de 5 ejemplos y ejercicios con soluciones sobre el área del triángulo escaleno, para que puedas practicar por tu cuenta y profundizar tus conocimientos.

🏆Ejercicios de área del triángulo

¿Por qué es importante que practiques sobre el cálculo de área de triángulo escaleno para niños?

Incluso si ya estudiamos la fórmula del área del triángulo escaleno y estamos seguros de haber entendido el asunto en general, ¡es fundamental que intentes resolver ejercicios por tu cuenta!
Vale la pena experimentar tantos tipos de preguntas como sea posible y analizar la mayor cantidad de ejemplos sobre como hallar el área del triángulo escaleno.
Solo practicando y resolviendo un amplio número de preguntas y ejercicios con cálculos de área de un triángulo escaleno, podrás asimilar a fondo el tema y adquirirás las herramientas necesarias para enfrentar cualquier desafío por tus propios medios.

Preguntas básicas

Ejemplos y ejercicios con soluciones de área del triángulo escaleno

Ejercicio #1

Dado el triángulo ABC.
AC = 10 cm, AD = 3 cm, BC = 11.6 cm
¿Cuál es el área del triángulo?

11.611.611.6101010333AAABBBCCCDDD

Solución

El triángulo que estamos viendo es el triángulo grande - ABC

El triángulo está formado por tres lados AB, BC y CA.

Ahora recordemos lo que necesitamos para el cálculo de un área triangular:

(lado x la altura que desciende del lado)/2

Por lo tanto, lo primero que debemos encontrar es una altura y un lado adecuados.

Se nos da el AC lateral, pero no hay altura que desciende, por lo que no nos sirve.

El lado AB no está dado,

Y así nos quedamos con el lado BC, que está dado.

Por el lado BC desciende la altura AD (los dos forman un ángulo de 90 grados).

Se puede argumentar que BC es también una altura, pero si profundizamos parece que CD puede ser una altura en el triángulo ADC,

y BD es una altura en el triángulo ADB (ambos son los lados de un triángulo rectángulo, por lo tanto son la altura y el lado).

Como no sabemos si el triángulo es isósceles o no, tampoco es posible saber si CD=DB, o cuál es su razón, y esta teoría falla.

Recordemos nuevamente la fórmula del área triangular y reemplacemos los datos que tenemos en la fórmula:

(lado* la altura que desciende del lado)/2

Ahora reemplazamos los datos existentes en esta fórmula:

CB×AD2 \frac{CB\times AD}{2}

11.6×32 \frac{11.6\times3}{2}

34.82=17.4 \frac{34.8}{2}=17.4

Respuesta

17.4

Ejercicio #2

Calcula el área del triángulo siguiente:

444555AAABBBCCCEEE

Solución

La fórmula de cálculo del área triangular es:

(el lado * la altura del lado que desciende al lado) /2

Es decir:

BC×AE2 \frac{BC\times AE}{2}

Ahora reemplazamos los datos existentes:

4×52=202=10 \frac{4\times5}{2}=\frac{20}{2}=10

Respuesta

10

Ejercicio #3

Calcula el área del triángulo ABC mediante los datos del dibujo:

121212888999AAABBBCCCDDD

Solución

En primer lugar, recordemos la fórmula para el área de un triángulo:

(el lado * la altura del desciende al lado) /2

 

En la pregunta tenemos tres datos, ¡pero uno de ellos es redundante!

Solo tenemos una altura, la línea que forma un ángulo de 90 grados - AD,

El lado al que desciende la altura es CB,

Por lo tanto, podemos usarlos en nuestro cálculo:

CB×AD2 \frac{CB\times AD}{2}

8×92=722=36 \frac{8\times9}{2}=\frac{72}{2}=36

Respuesta

36 cm²

Ejercicio #4

Frente a ti hay un triángulo rectángulo, calcula su área

101010666888AAACCCBBB

Solución

Como vemos que AB es perpendicular a BC y forma un ángulo de 90 grados

Se puede argumentar que AB es la altura del triángulo.

Entonces podemos calcular el área de la siguiente manera:

AB×BC2=8×62=482=24 \frac{AB\times BC}{2}=\frac{8\times6}{2}=\frac{48}{2}=24

Respuesta

24 cm²

Ejercicio #5

¿Cuáles de los siguientes triángulos tienen el mismo área?

101010121212555131313555888121212666666FFFEEEGGGCCCBBBAAAKKKJJJIIIDDDLLLHHH

Solución

Calculamos el área del triángulo ABC:

12×52=602=30 \frac{12\times5}{2}=\frac{60}{2}=30

Calculamos el área del triángulo EFG:

6×102=602=30 \frac{6\times10}{2}=\frac{60}{2}=30

Calculamos el área del triángulo JIK:

6×52=302=15 \frac{6\times5}{2}=\frac{30}{2}=15

Se puede ver que después del cálculo, las áreas de los triángulos semejantes son ABC y EFG

Respuesta

EFG, ABC

Ejercicio #6

El área del triángulo ABC es 20 cm²

El largo de la altura AD=8

Calcula la longitud del lado BC

S=20S=20S=20888AAACCCBBBDDD

Solución

Podemos presentar los datos en la fórmula para calcular el área del triángulo:

S=AD×BC2 S=\frac{AD\times BC}{2}

20=8×BC2 20=\frac{8\times BC}{2}

Multiplicación cruzada:

40=8BC 40=8BC

Divide ambos lados por 8:

408=8BC8 \frac{40}{8}=\frac{8BC}{8}

BC=5 BC=5

Respuesta

5 cm

Ejercicio #7

Dado el triángulo PRS

El largo del lado SR es 4 cm

El área del triángulo PSR es 30 cm²

Calcula la altura PQ

S=30S=30S=30444PPPRRRSSSQQQ

Solución

Utilizamos la fórmula para calcular el área del triángulo.

Presta atención: ¡en el triángulo obtusángulo, su altura se encuentra por fuera del triángulo!

LadoAltura2=Aˊrea del triangulo \frac{Lado\cdot\text{Altura}}{2}=Área~del~triangulo

Duplicar la ecuación por un denominador común.

4PQ2=30 \frac{4\cdot PQ}{2}=30

2 \cdot2

Divide la ecuación por el coeficiente de PQ PQ .

4PQ=60 4PQ=60 / :4 :4

PQ=15 PQ=15

Respuesta

15 cm

Ejercicio #8

triángulo ABC es rectángulo

El área del triángulo es 6 cm²

Calcula a X y el largo del lado BC

S=6S=6S=6444X-1X-1X-1X+1X+1X+1AAACCCBBB

Solución

Utilizamos la fórmula para calcular el área del triángulo rectángulo:

ACBC2=cateto×cateto2 \frac{AC\cdot BC}{2}=\frac{cateto\times cateto}{2}

Y compara la expresión con el área del triángulo 6 6

4(X1)2=6 \frac{4\cdot(X-1)}{2}=6

Duplicar la ecuación por el denominador común significa que multiplicamos por 2 2

4(X1)=12 4(X-1)=12

Abrimos los paréntesis antes de la propiedad distributiva

4X4=12 4X-4=12 / +4 +4

4X=16 4X=16 / :4 :4

X=4 X=4

Reemplazamos \( X=4 \) en la expresión BC BC y

encontramos:

BC=X1=41=3 BC=X-1=4-1=3

Respuesta

X=4 BC=3

Ejercicio #9

Calcule el área del triángulo ABC:

Dado que: Perímetro=26

666AAABBBCCCEEE97

Solución

Recuerda que el perímetro de un triángulo es igual a la suma de todos los lados juntos,

Ahora halla el lado BC:

26=9+7+BC 26=9+7+BC

26=16+BC 26=16+BC

Pasamos el 16 hacia la sección izquierda y mantenemos el signo correspondiente:

2616=BC 26-16=BC

10=BC 10=BC

Usamos la fórmula para calcular el área de un triángulo:

(el lado * la altura) /2

Es decir:

BC×AE2 \frac{BC\times AE}{2}

Reemplazamos los datos existentes:

10×62=602=30 \frac{10\times6}{2}=\frac{60}{2}=30

Respuesta

30

Ejercicio #10

Dado el triángulo ABC cuyo perímetro es 42 cm

AD=12 AC=15 AB=13

Calcule el área del triángulo ABC

131313151515121212AAABBBCCCDDD

Solución

Dado que el perímetro del triángulo ABC es 42.

Usaremos este dato para hallar el lado CB:

13+15+CB=42 13+15+CB=42

CB+28=42 CB+28=42

CB=4228=14 CB=42-28=14

Ahora podemos calcular el área del triángulo ABC:

AD×BC2=12×142=1682=84 \frac{AD\times BC}{2}=\frac{12\times14}{2}=\frac{168}{2}=84

Respuesta

84 cm²

Ejercicio #11

Dado un triángulo rectángulo ABD cuyo perímetro es 36 cm

Dado: AB=15 AC=13 DC=5 CB=4

Calcule el área del triángulo ABD

151515444555131313BBBCCCDDDAAA

Solución

De acuerdo a los datos:

BD=4+5=9 BD=4+5=9

Ahora que nos dan el perímetro del triángulo ABD podemos hallar el lado que falta AD:

AD+15+9=36 AD+15+9=36

AD+24=36 AD+24=36

AD=3624=12 AD=36-24=12

Ahora podemos calcular el área del triángulo ABD:

AD×BD2=12×92=1082=54 \frac{AD\times BD}{2}=\frac{12\times9}{2}=\frac{108}{2}=54

Respuesta

54 cm²

Ejercicio #12

Dado el triángulo ABC

AD=6 CE=3 CB=5

¿Cuál debería ser la longitud de AB de modo que el área de un triángulo ABC sea compatible con el resto de datos del dibujo?

555666333AAABBBCCCDDDEEE

Solución

Dado que AD es perpendicular a CB

Por lo tanto AD es la altura en el triángulo ADB

Área del triángulo ABC=

AD×CB2 \frac{AD\times CB}{2}

Reemplazamos los datos existentes en la fórmula:

6×52=302=15 \frac{6\times5}{2}=\frac{30}{2}=15

Como CE también es una altura, podemos calcular el área del triángulo ABC de la siguiente manera:

CE×AB2 \frac{CE\times AB}{2}

Puesto que hallamos el área del triángulo ABC, reemplazaremos los datos en la fórmula:

15=3×AB2 15=\frac{3\times AB}{2}

Multiplicamos en cruce:

30=3AB 30=3AB

Dividimos ambos lados por 3:

303=3AB3 \frac{30}{3}=\frac{3AB}{3}

AB=10 AB=10

Respuesta

10 cm

Ejercicio #13

El perímetro del triángulo ABD es 36 cm

Dado en cm: AB=15 AC=13 DC=5 CB=4

Calcule el área del triángulo ADC

151515131313AAABBBDDDCCC54

Solución

Usamos el dato del perímetro del triángulo, con la ayuda del cual primero encontraremos el lado AD calculando la suma de todos los lados del triángulo:

AD+9+15=36 AD+9+15=36

AD+24=36 AD+24=36

AD=3624=12 AD=36-24=12

Ahora que sabemos que AD es igual a 12, notaremos que AD también es altura de BD ya que forma un ángulo de 90 grados.

Si AD es la altura de BD, también lo es de DC.

Ahora calculamos el área del triángulo ADC:

AD×DC2 \frac{AD\times DC}{2}

12×52=602=30 \frac{12\times5}{2}=\frac{60}{2}=30

Respuesta

30 cm²

Ejercicio #14

Triángulo ABC es un triángulo isósceles AB=AC

AD es la altura del lado BC

Dado DC=10

El largo de la altura AD es mayor por 20% que el largo del lado BC.

Calcule el área del triángulo ABC

AAACCCBBBDDD10

Solución

Dado que es un triángulo isósceles, y por lo tanto mediana, y por eso DC=10 DC=10 entonces BC=20 BC=20 .

La altura AD AD es mayor en 20 20% que el largo de BC BC .

Es decir:

AD=1.2BC AD=1.2\cdot BC

100100+20100=120100=1.2 \frac{100}{100}+\frac{20}{100}=\frac{120}{100}=1.2

AD=1.220=24 AD=1.2\cdot20=24

De aquí, el área del triángulo ΔABC ΔABC :

AΔABC=ADBC2=24202=4802=240 AΔ\text{ABC}=\frac{AD\cdot BC}{2}=\frac{24\cdot20}{2}=\frac{480}{2}=240

Respuesta

240 cm²

Ejercicio #15

En el jardín del hotel quieren construir una piscina especial en forma de triángulo.

El largo de la piscina 10 metros y su ancho 8 metros.

La piscina está cubierta con baldosas. La longitud de cada mosaico es 2 metros y su ancho es 2 metros

¿Cuántas baldosas necesita para cubrir el área de la piscina?

101010888AAACCCBBB

Solución

Para saber cuántas baldosas se necesitan calcularemos el área triangular y el área de cada baldosa y luego dividiremos.

A.triaˊnguloA.baldosa \frac{\text{A.triángulo}}{A.baldosa}

El resultado es igual a la cantidad de baldosas que se necesitan.

En un triángulo su largo es igual a su altura y su ancho es igual a la base del triángulo

A.triangulo=1082=40 \text{A.triangulo=}\frac{10\cdot8}{2}=40

Dado=h=largo=10 10 metros

Dado=base=ancho=8 8 metros

Dado que el largo son 2 2 metros

El ancho: \( 2 \) metros

Área de la baldosa 22=4 2\cdot2=4

404=10 \frac{40}{4}=10

Respuesta

10 baldosas

¿Cuántos ejercicios y ejemplos de cálculo de área de triángulo escaleno para niños es necesario realizar?

La cantidad de ejercicios y ejemplos de diferentes cálculos de área de triángulo escaleno que debemos practicar, varía de persona en persona.
En general, recomendamos resolver muchas pruebas y observar varios ejemplos para que, en total, estos cubran la mayor cantidad de tipos de ejercicios posibles.
Cuanto más ejercites con la fórmula del área del triángulo escaleno, comprenderás el tema más profundamente y aumentará la probabilidad de que te vaya bien y que tengas éxito.

Las preguntas más nuevas