En un número mixto de un número entero y una fracción -
la fracción es el residuo.
En un número mixto de un número entero y una fracción -
la fracción es el residuo.
En una fracción mayor que donde el numerador es mayor que el denominador -
El residuo consiste en un denominador y numerador, que es la parte que queda después de encontrar cuántos números enteros hay en la fracción.
Escriba la fracción como un número mixto:
\( \frac{10}{7}= \)
Un residuo es una parte de un número no entero.
Generalmente ocurre cuando dividimos un número entre otro y no se divide de manera exacta.
Por ejemplo, si queremos dividir triángulos de pizza entre niños.
¿Cómo los dividimos?
Cada niño recibirá un triángulo de pizza y un tercio de un triángulo.
El tercio de un triángulo es el resto.
Dado que después de darle a cada niño un triángulo, quedó un triángulo sobrante que dividimos en partes entre cada niño.
Una fracción tiene varias formas que podemos encontrar, y es importante entender cuál es el residuo en cada fracción.
En cada fracción, el residuo es lo que queda del número entero.
Veamos algunos ejemplos para ayudarnos a entender mejor este concepto:
En una fracción en forma de número entero y residuo (es decir, un número mixto)-
Es más fácil para nosotros identificar cuál es el residuo.
Por ejemplo, en este número mixto:
Podemos identificar inmediatamente que hay números enteros y un residuo de -
En una fracción donde el numerador es mayor que el denominador -
En una fracción de esta forma, cuando el numerador es mayor que el denominador, no podemos identificar inmediatamente el residuo. Por ejemplo, en la fracción:
Necesitamos entender cuántas veces cabe en como número entero y lo que queda es nuestro residuo.
¿Cuál es el número más cercano a que es divisible por sin residuo? La respuesta es 8.
8 dividido por es , así que hay números enteros.
En otras palabras, podemos decir que cabe en veces como número entero, así que el número entero es .
¿Hemos terminado? Para nada.
Si "ponemos" veces , obtenemos , pero el numerador es . Por lo tanto, nos queda .
Nota -
Así que el residuo es
porque después de poner veces , nos queda de , es decir, un medio.
Veamos otro ejemplo.
¿Cuál es el residuo en la fracción:
Preguntémonos, ¿cuántas veces cabe el en el como número entero?
La respuesta es vez
Entonces tenemos un residuo de
Otro ejemplo con una solución matemática:
Si fue complicado entender el concepto de residuo verbalmente, trata de entenderlo a través de un ejercicio de cálculo.
¿Cuál es el residuo en la fracción -
Preguntémonos, ¿cuál es el número más cercano a que es divisible por sin residuo.
La respuesta es .
Dividamos entre para obtener el número entero.
Ahora restemos de el resultado de multiplicar:
el número entero que obtuvimos
y escribamos la respuesta en el numerador con denominador .
La fracción que obtenemos es nuestro residuo.
es el número entero.
El resultado será el numerador y el denominador será como en el ejercicio original.
El residuo es
¿Toda fracción donde el numerador es mayor que el denominador tiene un residuo?
¡Absolutamente no!
A veces hay fracciones donde el numerador es más grande que el denominador, pero el denominador divide uniformemente al numerador sin dejar residuo, por lo que no hay residuo.
Veamos un ejemplo -
En la fracción
El numerador es efectivamente más grande que el denominador pero cabe en dos veces sin dejar residuo, por lo que no hay residuo.
¿Qué sucede cuando el numerador es igual al denominador?
Cuando el numerador es igual al denominador no hay residuo y el número entero es .
Como por ejemplo en la fracción:
Consejo adicional –
¿Cuál es el residuo en una fracción menor que , por ejemplo en la fracción
La respuesta es la fracción completa, es decir,
el residuo es
ya que el número entero es .
¡Y ahora practiquemos!
Escribe cuál es el residuo en cada uno de los siguientes números y explica.
Solución:
El residuo es
Se puede ver claramente que hay números enteros y un tercio de residuo.
¿Cuál es el residuo en la fracción-
Solución:
Sin residuo. entra en exactamente dos veces.
¿Cuál es el residuo en la fracción:
cabe en una vez con residuo
Por lo tanto este es nuestro residuo.
Escriba la fracción como un número mixto:
\( \frac{12}{8}= \)
Escriba la fracción como un número mixto:
\( \frac{13}{9}= \)
Escriba la fracción como un número mixto:
\( \frac{16}{10}= \)
¿Cuánto representa la parte marcada?
Podemos ver que hay tres partes sombreadas de un total de seis partes,
es decir: 3/6
¡Pero esta no es la respuesta final todavía!
Observemos que esta fracción se puede simplificar,
lo que significa que es posible dividir tanto el numerador como el denominador por el mismo número,
de modo que la fracción no pierda su valor. En este caso, el número es 3.
3:3=1
6:3=2
Y así obtenemos 1/2, o un medio.
Y si miramos el dibujo original, podemos ver que la mitad está coloreada.
¿Qué fracción resulta de dividir 8 por 16?
Escribe el ejercicio:
Ahora escribimos en forma de fracción simple, recordando que el numerador está arriba y el denominador está abajo:
Dividimos el numerador y el denominador por el número que divide a ambos, en este caso el número es 8:
Mi numerador es 4 y mi denominador es 8.
¿Quién soy?
Recordemos que el numerador es el número de arriba y el denominador es el número de abajo.
Ahora vamos a representarlo en consecuencia:
Dividimos el numerador y el denominador entre 4:
¿Quién soy?
Mi numerador es 2 y mi denominador es 6
Recordemos que el numerador está arriba, mientras que el denominador está abajo.
Ahora vamos a sustituir correspondientemente y obtendremos:
Nota que podemos simplificar esta fracción para obtener:
Escribamos la expresión en la siguiente forma:
Dividamos tanto el numerador como el denominador por 3 y obtendremos: