Tasa de variación de una función representada gráficamente

Tasa de variación de una función representada gráficamente

La tasa de variación de una función representada gráficamente nos permite determinar de un modo mucho más intuitivo si se trata de un ritmo constante (fijo) o inconstante (que no es fijo), y también si se trata de un ritmo más rápido (pendiente más empinada) o más lento (pendiente más moderada).

La siguiente gráfica puede demostrar lo mencionado anteriormente de la mejor manera:

Tasa de variación de una función representada gráficamente

Tasa de variación de una función representada gráficamente

Observemos la gráfica. Nos percataremos de que está dividida en 4 ramas diferentes. Ahora analizaremos cada una de las ramas:

  • Rama 1: el gráfico sube (función creciente) a ritmo constante (línea recta).
  • Rama 2: El gráfico baja (función decreciente) a ritmo constante (línea recta).
  • Rama 3: el gráfico sube (función creciente) a ritmo constante (línea recta) y más rápidamente que el de la rama 1 (la pendiente es más empinada).
  • Rama 4: El gráfico baja (función decreciente) a ritmo constante (línea recta) y más lentamente que el de la rama 2 (la pendiente es más moderada).

Fuimos capaces de captar toda esta información sólo a través de la gráfica de la función. 

(Tasa de variación de una función: función con ritmo de cambio constante que cuando está representada por una línea recta en el gráfico significa que se trata de una función con tasa de variación constante)

Podemos ver la tasa de variación de la función de manera gráfica.
Primeramente, para exhibirla de un modo gráfico, observaremos la función y examinaremos si la pendiente sube o baja.
La pendiente es el coeficiente de X.
Si el coeficiente es positivo: la pendiente sube y la función será creciente.
Si el coeficiente es negativo: la pendiente baja y la función será decreciente.

A continuación, examinaremos cuál es la variable independiente en la función si la hay y la marcaremos como punto de intersección con el eje Y.
Otro modo para trazar la función es controlar cuál es su punto de intersección con el eje X (colocar y=0) y el eje Y (colocar x=0) y dibujarla conforme a esto.
Una función que aparezca en la representación gráfica como una línea recta tendrá una tasa de variación constante.
Una función que aparezca en la representación gráfica como una línea que no sea recta tendrá una tasa de variación inconstante.

imagen 3 Tasa de variación constante de una función

Función con tasa de variación inconstante


Si te interesa este artículo también te pueden interesar los siguientes artículos:

Tasa de variación de una función

Tasa de variación de una función representada por una tabla de valores

Tasa de variación constante

Tasa de variación inconstante

Tasa de variación representada con peldaños en la gráfica de la función

Tasa de variación representada con peldaños en la gráfica de la función

En el blog de Tutorela encontrarás una variedad de artículos con interesantes explicaciones sobre matemáticas