¿Cómo calcular el área de un triángulo usando trigonometría?
A lo largo de los estudios de geometría, que tratan con diversas estructuras y formas, se requiere calcular áreas y perímetros. Cada forma o estructura tiene una fórmula diferente a través de la cual puedes responder la pregunta y calcular el área. Afortunadamente, existe una fórmula que se puede aplicar a todos los triángulos, y se puede usar para calcular el área de un triángulo usando trigonometría.
En el campo de las matemáticas, también se hace énfasis en la trigonometría, que trata del estudio de los triángulos, sus ángulos y lados. Cada estudiante debe demostrar conocimiento de los triángulos (desde los triángulos rectángulos hasta los triángulos isósceles), y así también responder a la pregunta de cómo calcular el área de un triángulo usando trigonometría.
Una fórmula para todos los triángulos diferentes
Ahora que conoces la fórmula para calcular el área de un triángulo usando trigonometría, puedes usarla en cualquier pregunta donde necesites calcular áreas en triángulos. La fórmula para calcular el triángulo:
¿Cómo calcular el área de un triángulo usando trigonometría?
A lo largo de los estudios de geometría, que tratan con diferentes estructuras y formas, se requiere calcular áreas y perímetros. Cada forma o estructura tiene una fórmula diferente a través de la cual puedes responder la pregunta y calcular el área. Afortunadamente, existe una fórmula que se puede aplicar a todos los triángulos. Se puede usar para calcular el área de un triángulo usando trigonometría.
En los estudios de matemáticas, también se hace énfasis en la trigonometría, que trata del estudio de los triángulos, sus ángulos y lados. Tanto los estudiantes que estudian matemáticas de nivel B en la escuela intermedia, como aquellos que toman 3 unidades en la escuela secundaria, deben demostrar conocimiento de los triángulos (desde triángulos rectángulos hasta triángulos isósceles), y así también responder a la pregunta de cómo calcular el área de un triángulo usando trigonometría.
Una fórmula para todos los triángulos diferentes
Ahora que conoces la fórmula para calcular el área de un triángulo usando trigonometría, puedes usarla en cualquier pregunta donde necesites calcular áreas en triángulos. La fórmula para calcular el triángulo:
Ejemplo:
Dado el triángulo ABC y se sabe que:
El lado AB es igual a 5
El lado AC es igual a 8
El ángulo Y es 60 grados.
Insertemos los valores dados en la fórmula y deberíamos obtener:
s=2AC⋅AB⋅sin60
En otras palabras:
s=25⋅8⋅0.866
El resultado obtenido es: 17.32.
¡Únete a 30,000 estudiantes destacados en matemáticas!
Práctica ilimitada, guía de expertos: mejora tus habilidades matemáticas hoy
Comprueba tu conocimiento
Ejercicio 1
¿Cuál es el área del triángulo del dibujo?
Incorrecto
Respuesta correcta:
17.5
Ejercicio 2
Dado el triángulo ABC. AC = 10 cm, AD = 3 cm, BC = 11.6 cm ¿Cuál es el área del triángulo?
Incorrecto
Respuesta correcta:
17.4
Ejercicio 3
Halla el área del triángulo mediante los datos de la figura:
Incorrecto
Respuesta correcta:
14
ejemplos con soluciones para Área del triángulo
Ejercicio #1
Calcula el área del triángulo siguiente:
Solución en video
Solución Paso a Paso
La fórmula de cálculo del área triangular es:
(el lado * la altura del lado que desciende al lado) /2
Es decir:
2BC×AE
Ahora reemplazamos los datos existentes:
24×5=220=10
Respuesta
10
Ejercicio #2
Calcula el área del triángulo ABC mediante los datos del dibujo:
Solución en video
Solución Paso a Paso
En primer lugar, recordemos la fórmula para el área de un triángulo:
(el lado * la altura del desciende al lado) /2
En la pregunta tenemos tres datos, ¡pero uno de ellos es redundante!
Solo tenemos una altura, la línea que forma un ángulo de 90 grados - AD,
El lado al que desciende la altura es CB,
Por lo tanto, podemos usarlos en nuestro cálculo:
2CB×AD
28×9=272=36
Respuesta
36 cm²
Ejercicio #3
Calcula el área del triángulo rectángulo a continuación:
Solución en video
Solución Paso a Paso
Como vemos que AB es perpendicular a BC y forma un ángulo de 90 grados
Se puede argumentar que AB es la altura del triángulo.
Entonces podemos calcular el área de la siguiente manera:
2AB×BC=28×6=248=24
Respuesta
24 cm²
Ejercicio #4
Halla el área del triángulo (tenga en cuenta que esto no siempre es posible)
Solución en video
Solución Paso a Paso
La fórmula para calcular el área de un triángulo es:
(lado * altura correspondiente al lado) / 2
Observa que en el triángulo que se nos proporciona, tenemos la longitud del lado pero no la altura.
Es decir, no tenemos datos suficientes para realizar el cálculo.
Respuesta
No se puede calcular
Ejercicio #5
Dado el triángulo ABC. AC = 10 cm, AD = 3 cm, BC = 11.6 cm ¿Cuál es el área del triángulo?
Solución en video
Solución Paso a Paso
El triángulo que estamos viendo es el triángulo grande - ABC
El triángulo está formado por tres lados AB, BC y CA.
Ahora recordemos lo que necesitamos para el cálculo de un área triangular:
(lado x la altura que desciende del lado)/2
Por lo tanto, lo primero que debemos encontrar es una altura y un lado adecuados.
Se nos da el AC lateral, pero no hay altura que desciende, por lo que no nos sirve.
El lado AB no está dado,
Y así nos quedamos con el lado BC, que está dado.
Por el lado BC desciende la altura AD (los dos forman un ángulo de 90 grados).
Se puede argumentar que BC es también una altura, pero si profundizamos parece que CD puede ser una altura en el triángulo ADC,
y BD es una altura en el triángulo ADB (ambos son los lados de un triángulo rectángulo, por lo tanto son la altura y el lado).
Como no sabemos si el triángulo es isósceles o no, tampoco es posible saber si CD=DB, o cuál es su razón, y esta teoría falla.
Recordemos nuevamente la fórmula del área triangular y reemplacemos los datos que tenemos en la fórmula:
(lado* la altura que desciende del lado)/2
Ahora reemplazamos los datos existentes en esta fórmula: