¿Cómo calculamos el área de figuras complejas?

🏆Ejercicios de área del rectángulo

¿Cómo calculamos el área de figuras complejas?

Cuando los estudiantes escuchan las palabras "figuras compuestas", generalmente se sienten incómodos. Justo antes de que también te preguntes: "Oh, ¿por qué esto otra vez?", debes saber que no hay una razón real. Describir las figuras como compuestas no las hace realmente así. Resulta que calcular áreas y perímetros de figuras compuestas es en realidad relativamente sencillo.

Serás introducido a las figuras complejas solo después de que aprendas varias figuras en geometría. La razón por la que estas figuras son complejas se debe al hecho de que son ligeramente diferentes de las que has llegado a conocer. En cada figura compleja, hay figuras adicionales ocultas que necesitas identificar. Dividir la figura compleja en varias figuras diferentes (y familiares) te permitirá responder a la pregunta de cómo calcular el área de figuras complejas.

El truco: extraer una forma familiar dentro de la forma compleja

Entonces, ¿cómo respondemos a la pregunta de cómo calcular el área de figuras complejas? Primero, necesitas identificar figuras familiares dentro de la figura compleja. Un ejemplo de esto: un rectángulo. Como sabes, cada figura tiene propiedades que conoces, así que dentro de la figura compleja, puedes aplicar las propiedades de la figura familiar y así calcular áreas y perímetros.

Después de completar los datos faltantes (según las propiedades de cada figura, por ejemplo: rectángulo), puedes completar el "rompecabezas", identificar datos adicionales que se te revelan y así calcular el área de la figura compleja. Al calcular el área de figuras complejas, a menudo necesitarás realizar operaciones aritméticas simples como división y suma (principalmente para los lados de la figura) - todo basado en las propiedades únicas de cada figura.

Dos figuras compuestas con medidas en los lados. • Figura izquierda: Forma de 'casita', compuesta por un rectángulo (4 unidades de ancho y 4 de alto) con un triángulo en la parte superior (dos lados de 6 unidades, base de 4 unidades). • Figura derecha: Polígono en forma de L, compuesto por rectángulos. La parte superior mide 5 unidades de ancho y 4 de alto. La parte inferior tiene una muesca de 1 unidad, y mide 3 unidades de ancho por 2 de alto. La altura total es de 7 unidades.

Ir a prácticas

¡Pruébate en área del rectángulo!

einstein

Calcula el área del paralelogramo según los datos.

101010777AAABBBCCCDDDEEE

Quiz y otros ejercicios

¿Cómo calculamos el área de figuras complejas?

Cuando los estudiantes escuchan las palabras "figuras compuestas", generalmente se sienten incómodos. Justo antes de que también te preguntes: "Oh, ¿por qué esto otra vez?", debes saber que realmente no hay razón. Describir las figuras como compuestas no las hace realmente así. Resulta que calcular áreas y perímetros de figuras compuestas puede ser relativamente sencillo.

Serás introducido a las figuras complejas solo después de que aprendas varias figuras en geometría. La razón por la que estas figuras son complejas se debe al hecho de que son ligeramente diferentes de las que has llegado a conocer. En cada figura compleja, hay figuras adicionales ocultas que necesitas identificar. Dividir la figura compleja en varias figuras diferentes (y familiares) te permitirá responder a la pregunta de cómo calcular el área de figuras complejas.

El truco: extraer una forma familiar dentro de la forma compleja

Entonces, ¿cómo respondemos a la pregunta de cómo calcular el área de figuras complejas? Primero, necesitas identificar figuras familiares dentro de la figura compleja. Por ejemplo: un rectángulo. Como sabes, cada figura tiene propiedades que conoces, así que dentro de la figura compleja, puedes aplicar las propiedades de la figura familiar y así calcular áreas y perímetros.

Después de completar los datos faltantes (según las propiedades de cada figura, por ejemplo: rectángulo), puedes completar el "rompecabezas", identificar datos adicionales que se hacen evidentes y así calcular el área de la figura compuesta. Al calcular el área de figuras compuestas, frecuentemente necesitarás realizar operaciones aritméticas simples como división y suma (especialmente para los lados de la figura) - todo basado en las propiedades únicas de cada figura.

Por ejemplo: Suponiendo que la figura compuesta incluye varios rectángulos diferentes, según las longitudes de los lados dadas, será posible calcular las diferentes áreas. El área de un rectángulo se calcula usando la fórmula largo X ancho. Cuando las longitudes de los lados son visibles, se pueden realizar restas y sumas (según los tamaños de los rectángulos y sus posiciones dentro de la figura) de los lados, y así calcular el área de la figura, como se ve en el ejemplo a continuación.

Para calcular el área de la figura - la dividiremos de manera que cree dos rectángulos. Encontraremos el área sumando y/o restando rectángulos.

En esta división creamos:

Un rectángulo con tamaño 92=189 \cdot2 = 18 rectángulo AA

Un rectángulo con tamaño ​​​​86=48​​​​8 \cdot 6 = 48 rectángulo BB

El área de la forma compuesta completa es:

92+86=669\cdot2+8\cdot6=66

o

48+18=6648 + 18= 66

¡Únete a 30,000 estudiantes destacados en matemáticas!
Práctica ilimitada, guía de expertos: mejora tus habilidades matemáticas hoy
Comprueba tu conocimiento

ejemplos con soluciones para Área del rectángulo

Ejercicio #1

Calcula el área del paralelogramo según los datos.

101010777AAABBBCCCDDDEEE

Solución en video

Solución Paso a Paso

Como sabemos que ABCD es un paralelogramo, según las propiedades del mismo todo par de lados opuestos son iguales y paralelos.

Por lo tanto CD=AB=10 CD=AB=10

Calculamos el área del paralelogramo según la fórmula de lado por la altura que desciende de ese lado, por lo tanto el área del paralelogramo es igual a:

SABCD=10×7=70cm2 S_{ABCD}=10\times7=70cm^2

Respuesta

70

Ejercicio #2

Dado el trapecio:

999121212555AAABBBCCCDDDEEE

¿Cuál es el área?

Solución en video

Solución Paso a Paso

Fórmula del área de un trapecio:

(base+base)2×altura \frac{(base+base)}{2}\times altura

Reemplazamos los datos en la fórmula y resolvemos:

9+122×5=212×5=1052=52.5 \frac{9+12}{2}\times5=\frac{21}{2}\times5=\frac{105}{2}=52.5

Respuesta

52.5

Ejercicio #3

Dado el deltoide ABCD

La diagonal AC=8 es el área del deltoide es 32 cm²

Calcula la diagonal DB

S=32S=32S=32888AAABBBCCCDDD

Solución en video

Solución Paso a Paso

Primero, recordamos la fórmula del área del deltoide: multiplicar las longitudes de las diagonales entre sí y dividir este producto por 2.

Reemplazamos los datos sabidos en la fórmula:

 8DB2=32 \frac{8\cdot DB}{2}=32

Simplificamos el 8 y el 2:

4DB=32 4DB=32

Dividimos por 4

DB=8 DB=8

Respuesta

8 cm

Ejercicio #4

Dado el trapecio ABCD

Dado en cm: AB=2.5 base DC=4 altura h=6

Calcula el área del trapecio

2.52.52.5444h=6h=6h=6AAABBBCCCDDD

Solución en video

Solución Paso a Paso

Primero recordemos la fórmula del área del trapecio:

A=(Base + Base) h2 A=\frac{\left(Base\text{ }+\text{ Base}\right)\text{ h}}{2}

Reemplazamos los datos en la fórmula:

(2.5+4)*6 =
6.5*6=
39/2 = 
19.5

Respuesta

1912 19\frac{1}{2}

Ejercicio #5

Dado el rectángulo ABCD

Dado en cm: AB=10 BC=5

Calcula el área del rectángulo

101010555AAABBBCCCDDD

Solución en video

Solución Paso a Paso

Calculemos el área del rectángulo multiplicando el largo por el ancho:

AB×BC=10×5=50 AB\times BC=10\times5=50

Respuesta

50

Ir a prácticas
Temas relacionados